Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikroakışkan Kanalda Farklı Vizkozitelerde Sıralı Damlacık Oluşturulması

Yıl 2021, , 791 - 798, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005794

Öz

Mikroakışkan sistemlerde kontrollü ve sıralı damlacık oluşumu çip üzeri damlacık temelli desen oluşturulmasını sağlamak için uygundur. Bu sistemler farklı numuneleri tek bir cihazda ayrı ayrı inceleme fırsatı sunmaktadır. Örneğin iki farklı sıvıdan belli bir sıraya göre damlacıklar oluşturmak mümkündür. Bu çalışmada önce ikili T-birleşimli kanal geometrisi kullanarak farklı vizkozitelerdeki sıvılardan sıralı damlacık oluşumu gösterilmiştir. Damlacıklar su ve gliserol çözeltilerinden oluşturulmuştur. Ayrıca bu makale kapsamında iki farklı sıvının birleştirilmesi ile sonrasında damlacıkların sıra ile oluşturulmasını sağlamak için de tasarlanmış bir sistem çalışılmıştır. Bu çalışmaların biyoanaliz, tarama, hücre bazlı gözlem, kanal içi kimyasal sentez gibi pek çok uygulama alanı olacaktır.

Kaynakça

  • 1. Guo, F., Lapsley, M.I., Nawaz, A.A., Zhaoö, Y., Lin, S.C.S., Chen, Y., Yang, S., Zhao, X. Z., Huang, T.J., 2012. A Droplet-based, Optofluidic Device for High-throughput, Quantitative Bioanalysis. Anal. Chem., 84(24), 10745-10749.
  • 2. Brzeziński, M., Socka, M., Kost, B., 2019. Microfluidics for Producing Polylactide Nanoparticles and Microparticles and Their Drug Delivery Application. Polym. Int., 68(6), 997-1014.
  • 3. Shembekar, N., Hu, H., Eustace, D., Merten, C.A., 2018. Single-cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells. Cell Reports, 22(8), 2206-2215
  • 4. Erdem, E.Y., Cheng, J.C., Doyle, F.M., Pisano, A.P., 2014. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis. Small, 10(6), 1076-1080.
  • 5. Feng, H., Zheng, T., Li, M., Wu, J., Ji, H., Zhang, J., Zhao, W., Guo, J., 2019. Droplet-based Microfluidics Systems in Biomedical Applications. Electrophoresis, 40(11),1580-1590.
  • 6. Özkan, A., Erdem, E.Y., 2015. Numerical Analysis of Mixing Performance in Sinusoidal Microchannels Based on Particle Motion in Droplets. Microfluidics and Nanofluidics, 19(5), 1101-1108.
  • 7. Lashkaripour, A., Rodriguez, C., Ortiz, L., Densmore, D., 2019. Performance Tuning of Microfluidic Flow-focusing Droplet Generators. Lab Chip, 19, 1041-1053.
  • 8. Rahimi, M., Shams Khorrami, A., Rezai P., 2019. Effect of Device Geometry on Droplet Size in Co-axial Flow-focusing Microfluidic Droplet Generation Devices. Colloid. Surf. A., 570, 510-517.
  • 9. Chakraborty, I., Ricouvier, J., Yazhgur, P., Tabeling, P., Leshansky, A.M., 2019. Droplet Generation at Hele-shaw Microfluidic T-junction. Physics of Fluids, 31, 022010.
  • 10. Hong, J., Choi, M., Edel, J.B., deMello, A.J., 2010. Passive Self-synchronized Two-droplet Generation. Lab. Chip., 10, 2702-2709.
  • 11.Zheng, B., Tice, J.D., Ismagilov, R.F., 2004. Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-based Assays. Anal. Chem., 76, 4977-4982.
  • 12.Jin, B.J., Kim, Y.W., Lee, Y., Yoo, J.Y., 2010. Droplet Merging in a Straight Microchannel Using Droplet Size or Viscosity Difference. Journal of Micromechanics and Microengineering, 20(3), 035003.
  • 13. Ngo, I.L., Woo Joo, S., Byon, C., 2016. Effects of Junction Angle and Viscosity Ratio on Droplet Formation in Microfluidic Cross-junction. Journal of Fluids Engineering, 138(5).
  • 14. Han, W., Chen, X., Hu, Z., Yang, K., 2018. Three-dimensional Numerical Simulation of a Droplet Generation in a Double T-junction Microchannel. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 17(2), 025502.
  • 15. Yao, J., Lin, F., Kim, H.S., Park, J., 2019. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-junction Microfluidic Droplet Generator. Micromachines, 10(12), 808.
  • 16.Zhang, Y.Y., Xia, H.M., Wu, J.W., Zhang, J., Wang, Z.P., 2019. Synchronized Generation and Coalescence of Largely Dissimilar Microdroplets Governed by Pulsating Continuous-phase Flow. Applied Physics Letters, 114(7), 073701.
  • 17.Wu, J., Xia, H., Wang, W., Foo, Y., Wang, Z., Du, H., 2020. A Droplet Platform Capable of Handling Dissimilar Liquids and its Application for Separation of Bacteria from Blood. Biomicrofluidics, 14(3), 034102.
  • 18. Surya, H.P.N., Parayil, S., Banerjee, U., Chander, S., Sen, A.K., 2015. Alternating and Merged Droplets in a Double T-junction Microchannel. Bio Chip J., 9, 16-26.
  • 19. Saqib, M., Şahinoğlu, O.B., Erdem, E.Y., 2018. Alternating Droplet Formation by Using Tapered Channel Geometry. Sci. Rep., 8(1), 1-9.
  • 20.Wahab, M.A., Erdem, E.Y., 2020. Multi-step Microfludic Reactor for the Synthesis of Hybrid Nanoparticles. J. Micromech. Microeng., 30(8), 085006.
  • 21. Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M., 2006. Formation of Droplets and Bubbles in a Microfluidic T-junction-scaling and Mechanism of Break-up. Lab on a Chip, 6(3), 437-446.

Generation of Alternating Droplets with Different Viscosities in a Microfluidic Channel

Yıl 2021, , 791 - 798, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005794

Öz

Controlled alternating droplet formation in a microfluidic system can lead to an on-chip droplet-based pattern generation. This enables tracking of different samples individually within the same device. For instance, two different liquids can be segmented in a sequenced, repetitive fashion. In this work, we first show pattern generation by using liquids with unequal viscosities. Droplets of water and glycerol solution are generated in an alternating, repetitive fashion by using a microfluidic system with tapered, double T-junction. We also introduce a microsystem that has a mixing unit that generates a controlled sequence of droplets formed by mixing two different liquids on-chip. We believe that this study can have
applications such as biological analysis, sorting, cell-based monitoring or on-chip chemical synthesis.

Kaynakça

  • 1. Guo, F., Lapsley, M.I., Nawaz, A.A., Zhaoö, Y., Lin, S.C.S., Chen, Y., Yang, S., Zhao, X. Z., Huang, T.J., 2012. A Droplet-based, Optofluidic Device for High-throughput, Quantitative Bioanalysis. Anal. Chem., 84(24), 10745-10749.
  • 2. Brzeziński, M., Socka, M., Kost, B., 2019. Microfluidics for Producing Polylactide Nanoparticles and Microparticles and Their Drug Delivery Application. Polym. Int., 68(6), 997-1014.
  • 3. Shembekar, N., Hu, H., Eustace, D., Merten, C.A., 2018. Single-cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells. Cell Reports, 22(8), 2206-2215
  • 4. Erdem, E.Y., Cheng, J.C., Doyle, F.M., Pisano, A.P., 2014. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis. Small, 10(6), 1076-1080.
  • 5. Feng, H., Zheng, T., Li, M., Wu, J., Ji, H., Zhang, J., Zhao, W., Guo, J., 2019. Droplet-based Microfluidics Systems in Biomedical Applications. Electrophoresis, 40(11),1580-1590.
  • 6. Özkan, A., Erdem, E.Y., 2015. Numerical Analysis of Mixing Performance in Sinusoidal Microchannels Based on Particle Motion in Droplets. Microfluidics and Nanofluidics, 19(5), 1101-1108.
  • 7. Lashkaripour, A., Rodriguez, C., Ortiz, L., Densmore, D., 2019. Performance Tuning of Microfluidic Flow-focusing Droplet Generators. Lab Chip, 19, 1041-1053.
  • 8. Rahimi, M., Shams Khorrami, A., Rezai P., 2019. Effect of Device Geometry on Droplet Size in Co-axial Flow-focusing Microfluidic Droplet Generation Devices. Colloid. Surf. A., 570, 510-517.
  • 9. Chakraborty, I., Ricouvier, J., Yazhgur, P., Tabeling, P., Leshansky, A.M., 2019. Droplet Generation at Hele-shaw Microfluidic T-junction. Physics of Fluids, 31, 022010.
  • 10. Hong, J., Choi, M., Edel, J.B., deMello, A.J., 2010. Passive Self-synchronized Two-droplet Generation. Lab. Chip., 10, 2702-2709.
  • 11.Zheng, B., Tice, J.D., Ismagilov, R.F., 2004. Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-based Assays. Anal. Chem., 76, 4977-4982.
  • 12.Jin, B.J., Kim, Y.W., Lee, Y., Yoo, J.Y., 2010. Droplet Merging in a Straight Microchannel Using Droplet Size or Viscosity Difference. Journal of Micromechanics and Microengineering, 20(3), 035003.
  • 13. Ngo, I.L., Woo Joo, S., Byon, C., 2016. Effects of Junction Angle and Viscosity Ratio on Droplet Formation in Microfluidic Cross-junction. Journal of Fluids Engineering, 138(5).
  • 14. Han, W., Chen, X., Hu, Z., Yang, K., 2018. Three-dimensional Numerical Simulation of a Droplet Generation in a Double T-junction Microchannel. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 17(2), 025502.
  • 15. Yao, J., Lin, F., Kim, H.S., Park, J., 2019. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-junction Microfluidic Droplet Generator. Micromachines, 10(12), 808.
  • 16.Zhang, Y.Y., Xia, H.M., Wu, J.W., Zhang, J., Wang, Z.P., 2019. Synchronized Generation and Coalescence of Largely Dissimilar Microdroplets Governed by Pulsating Continuous-phase Flow. Applied Physics Letters, 114(7), 073701.
  • 17.Wu, J., Xia, H., Wang, W., Foo, Y., Wang, Z., Du, H., 2020. A Droplet Platform Capable of Handling Dissimilar Liquids and its Application for Separation of Bacteria from Blood. Biomicrofluidics, 14(3), 034102.
  • 18. Surya, H.P.N., Parayil, S., Banerjee, U., Chander, S., Sen, A.K., 2015. Alternating and Merged Droplets in a Double T-junction Microchannel. Bio Chip J., 9, 16-26.
  • 19. Saqib, M., Şahinoğlu, O.B., Erdem, E.Y., 2018. Alternating Droplet Formation by Using Tapered Channel Geometry. Sci. Rep., 8(1), 1-9.
  • 20.Wahab, M.A., Erdem, E.Y., 2020. Multi-step Microfludic Reactor for the Synthesis of Hybrid Nanoparticles. J. Micromech. Microeng., 30(8), 085006.
  • 21. Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M., 2006. Formation of Droplets and Bubbles in a Microfluidic T-junction-scaling and Mechanism of Break-up. Lab on a Chip, 6(3), 437-446.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhammad Saqıb 0000-0003-1490-3916

Emine Yegan Erdem Bu kişi benim 0000-0001-9852-2293

Yayımlanma Tarihi 30 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Saqıb, M., & Erdem, E. Y. (2021). Generation of Alternating Droplets with Different Viscosities in a Microfluidic Channel. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 791-798. https://doi.org/10.21605/cukurovaumfd.1005794