Araştırma Makalesi
BibTex RIS Kaynak Göster

Kara Tipi Ticari Büyük Ölçekli Rüzgâr Türbininin Aerodinamik Analizi

Yıl 2021, , 965 - 977, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040660

Öz

Bu çalışmada, kurulu bir rüzgâr santralinde (RES) çalışan yatay eksenli rüzgâr türbinlerinin yıllık aerodinamik özelliklerinin değişimleri kanat elemanı momentum teorisi ve açısal momentum teorisi yardımıyla detaylı olarak ortaya konmuştur. Bu amaçla, Türkiye'nin Hatay ilinde kurulu bir rüzgâr çiftliğinde yer alan, anma gücü 2 MW olan üç kanatlı tipte beş özdeş rüzgâr türbini seçilmiştir. Yatay eksenli rüzgar türbinlerinden elde edilen sonuçlara göre; anma gücü Pr=2 MW, yıllık ortalama türbin mekanik güç çıkışı (P), güç katsayısı (CP), serbest-akım rüzgar hızı (U∞) ve türbin rotor dönüş hızı (Ω) değerleri, sırasıyla, 672,68 kW, %30,80, 8,49 m/s ve 12,81 rpm olarak elde edilmiştir. Ayrıca, yıllık ortalama eksenel akış indüksiyon faktörü (a), itme katsayısı (CT), itme kuvveti (T) ve kanat ucu hız oranı (λ) değerleri, sırasıyla, 0,10, 0,34, 75,18 kN ve 6,57 olarak hesaplanmıştır.

Kaynakça

  • 1. Kaplan, Y.A., 2015. Overview of Wind Energy in the World and Assessment of Current Wind Energy Policies in Turkey. Renew. Sust. Energ. Rev., 43, 562-568.
  • 2. Waewsak, J., Landry, M., Gagnon, Y., 2015. Offshore Wind Power Potential of the Gulf of Thailand. Renew. Energ., 81, 609-626.
  • 3. Emmanouil, G., Galanis, G., Kalogeri, C., Zodiatis, G., Kallos, G., 2016. 10-Year High Resolution Study of Wind, Sea Waves and Wave Energy Assessment in the Greek Offshore Areas. Renew. Energ., 90, 399-419.
  • 4. Korompili, A., Wu, Q., Zhao, H., 2016. Review of VSC HVDC Connection for Offshore Wind Power Integration. Renew. Sust. Energ. Rev., 59, 1405-1414.
  • 5. Söderholm, P., Pettersson, M., 2011. Offshore Wind Power Policy and Planning in Sweden. Energy Policy, 39(2), 518-525.
  • 6. Kulkarni, P.A., Dhoble, A.S., Padole, P.M., 2018. Deep Neural Network-Based Wind Speed Forecasting and Fatigue Analysis of a Large Composite Wind Turbine Blade. Proc. Inst. Mech. Eng., Part C, 233(8), 2794-2812.
  • 7. Zheng, C.W., Li, C.Y., Pan, J., Liu, M.Y., Xia, L.L., 2016. An Overview of Global Ocean Wind Energy Resource Evaluations. Renew. Sust. Energ. Rev., 53, 1240-1251.
  • 8. Hsu, M.H., 2008. Dynamic Behaviour of Wind Turbine Blades. Proc. Inst. Mech. Eng., Part C, 222(8), 1453-1464.
  • 9. Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E., 2011. Wind Energy Handbook. 2nd ed. John Wiley and Sons, United Kingdom.
  • 10. He, Y.C., Chan, P.W., Li, Q.S., 2013. Wind Characteristics Over Different Terrains. J. Wind Eng. Ind. Aerod., 120, 51-69.
  • 11. Kishinami, K., Taniguchi, H., Suzuki, J., Ibano, H., Kazunou, T., Turuhami, M., 2005. Theoretical and Experimental Study on the Aerodynamic Characteristics of a Horizontal Axis Wind Turbine. Energy, 30, 2089-2100.
  • 12. Sedaghat, A., Assad, M.E.H., Gaith, M., 2014. Aerodynamics Performance of Continuously Variable Speed Horizontal Axis Wind Turbine with Optimal Blades. Energy, 77, 752-759.
  • 13. Wekesa, D.W., Wang, C., Wei, Y., 2016. Empirical and Numerical Analysis of Small Wind Turbine Aerodynamic Performance at a Plateau Terrain in Kenya. Renew. Energ., 90, 377-385.
  • 14. Ashrafi, Z.N., Ghaderi, M., Sedaghat, A., 2015. Parametric Study on Off-design Aerodynamic Performance of a Horizontal Axis Wind Turbine Blade and Proposed Pitch Control. Energy Convers. Manage., 93, 349-356.
  • 15. Lee, M.H., Shiah, Y.C., Bai, C.J., 2016. Experiments and Numerical Simulations of the Rotor-Blade Performance for a Small-Scale Horizontal Axis Wind Turbine. J. Wind Eng. Ind. Aerod., 149, 17-29.
  • 16. Melo, D.B., Baltazar, J., de Campos, J.A.C.F., 2018. A Numerical Wake Alignment Method for Horizontal Axis Wind Turbines with the Lifting Line Theory. J. Wind Eng. Ind. Aerod., 174, 382-390.
  • 17. Kaya, M.N., Kose, F., Ingham, D., Ma, L., Pourkashanian, M., 2018. Aerodynamic Performance of a Horizontal Axis Wind Turbine with Forward and Backward Swept Blades. J. Wind Eng. Ind. Aerod., 176, 166-173.
  • 18. Pourrajabian, A., Ebrahimi, R., Mirzaei, M., 2014. Applying Micro Scales of Horizontal Axis Wind Turbines for Operation in Low Wind Speed Regions. Energy Convers. Manage., 87, 119-127.
  • 19. Li, Q., Murata, J., Endo, M., Maeda, T., Kamada, Y., 2016. Experimental and Numerical Investigation of the Effect of Turbulent Inflow on a Horizontal Axis Wind Turbine (Part I: Power Performance). Energy, 113, 713-722.
  • 20. Xie, W., Zeng, P., Lei, L., 2017. Wind Tunnel Testing and Improved Blade Element Momentum Method for Umbrella-type Rotor of Horizontal Axis Wind Turbine. Energy, 119, 334-350.
  • 21. Singh, R.K., Ahmed, M.R., Zullah, M.A., Lee, Y.H., 2012. Design of a Low Reynolds Number Airfoil for Small Horizontal Axis Wind Turbines. Renew. Energ., 42, 66-76.
  • 22. Karthikeyan, N., Murugavel, K.K., Kumar, S.A., Rajakumar, S., 2015. Review of Aerodynamic Developments on Small Horizontal Axis Wind Turbine Blade. Renew. Sust. Energ. Rev., 42, 801-822.
  • 23. Bilgili, M., Tontu, M., Sahin, B., 2021. Aerodynamic Rotor Performance of a 3300-kW Modern Commercial Large-scale Wind Turbine Installed in a Wind Farm. J. Energy Resour. Technol., 143, 031302.
  • 24. Ilhan, A., Bilgili, M., Sahin, B., 2018. Analysis of Aerodynamic Characteristics of 2 MW Horizontal Axis Large Wind Turbine. Wind Struct., 27(3), 187-197.
  • 25. Bilgili, M., Yasar, A., 2017. Performance Evaluation of a Horizontal Axis Wind Turbine in Operation. Int. J. Green Energy, 14(12), 1048-1056.
  • 26. Cooney, C., Byrne, R., Lyons, W., O’Rourke, F., 2017. Performance Characterization of a Commercial-scale Wind Turbine Operating in an Urban Environment. Using Real Data, Energy Sustain Dev, 36, 44-54.
  • 27. Sedaghat, A., Mirhosseini, M., 2012. Aerodynamic Design of a 300 kW Horizontal Axis Wind Turbine for Province of Semnan. Energy Convers. Manage., 63, 87-94.
  • 28. Taner, T., 2018. Economic Analysis of a Wind Power Plant. A Case Study for the Cappadocia Region, J. Mech. Sci., 32(3), 1379-1389.

Aerodynamic Analysis of Onshore Commercial Large Scale Wind Turbine

Yıl 2021, , 965 - 977, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040660

Öz

In this study, the variations of yearly aerodynamic characteristics of horizontal axis wind turbines operating in an installed wind power plant (WPP) in detail was revealed by means of the blade element momentum theory and angular momentum theory. For this aim, five identical wind turbines of the three-bladed type having rated power of 2 MW located in an installed wind farm in Hatay province of Turkey were selected. According to the results obtained from horizontal axis wind turbines having rated power of Pr=2 MW, annual average turbine mechanical power output (P), power coefficient (CP), free-stream wind speed (U∞), and turbine rotor rotational speed (Ω) were obtained as 672.68 kW, 30.80%, 8.49 m/s and 12.81 rpm, respectively. Moreover, annual average axial flow induction factor (a), thrust coefficient (CT), thrust force (T) and blade tip speed ratio (λ) were calculated as 0.10, 0.34, 75.18 kN and 6.57, respectively.

Kaynakça

  • 1. Kaplan, Y.A., 2015. Overview of Wind Energy in the World and Assessment of Current Wind Energy Policies in Turkey. Renew. Sust. Energ. Rev., 43, 562-568.
  • 2. Waewsak, J., Landry, M., Gagnon, Y., 2015. Offshore Wind Power Potential of the Gulf of Thailand. Renew. Energ., 81, 609-626.
  • 3. Emmanouil, G., Galanis, G., Kalogeri, C., Zodiatis, G., Kallos, G., 2016. 10-Year High Resolution Study of Wind, Sea Waves and Wave Energy Assessment in the Greek Offshore Areas. Renew. Energ., 90, 399-419.
  • 4. Korompili, A., Wu, Q., Zhao, H., 2016. Review of VSC HVDC Connection for Offshore Wind Power Integration. Renew. Sust. Energ. Rev., 59, 1405-1414.
  • 5. Söderholm, P., Pettersson, M., 2011. Offshore Wind Power Policy and Planning in Sweden. Energy Policy, 39(2), 518-525.
  • 6. Kulkarni, P.A., Dhoble, A.S., Padole, P.M., 2018. Deep Neural Network-Based Wind Speed Forecasting and Fatigue Analysis of a Large Composite Wind Turbine Blade. Proc. Inst. Mech. Eng., Part C, 233(8), 2794-2812.
  • 7. Zheng, C.W., Li, C.Y., Pan, J., Liu, M.Y., Xia, L.L., 2016. An Overview of Global Ocean Wind Energy Resource Evaluations. Renew. Sust. Energ. Rev., 53, 1240-1251.
  • 8. Hsu, M.H., 2008. Dynamic Behaviour of Wind Turbine Blades. Proc. Inst. Mech. Eng., Part C, 222(8), 1453-1464.
  • 9. Burton, T., Jenkins, N., Sharpe, D., Bossanyi, E., 2011. Wind Energy Handbook. 2nd ed. John Wiley and Sons, United Kingdom.
  • 10. He, Y.C., Chan, P.W., Li, Q.S., 2013. Wind Characteristics Over Different Terrains. J. Wind Eng. Ind. Aerod., 120, 51-69.
  • 11. Kishinami, K., Taniguchi, H., Suzuki, J., Ibano, H., Kazunou, T., Turuhami, M., 2005. Theoretical and Experimental Study on the Aerodynamic Characteristics of a Horizontal Axis Wind Turbine. Energy, 30, 2089-2100.
  • 12. Sedaghat, A., Assad, M.E.H., Gaith, M., 2014. Aerodynamics Performance of Continuously Variable Speed Horizontal Axis Wind Turbine with Optimal Blades. Energy, 77, 752-759.
  • 13. Wekesa, D.W., Wang, C., Wei, Y., 2016. Empirical and Numerical Analysis of Small Wind Turbine Aerodynamic Performance at a Plateau Terrain in Kenya. Renew. Energ., 90, 377-385.
  • 14. Ashrafi, Z.N., Ghaderi, M., Sedaghat, A., 2015. Parametric Study on Off-design Aerodynamic Performance of a Horizontal Axis Wind Turbine Blade and Proposed Pitch Control. Energy Convers. Manage., 93, 349-356.
  • 15. Lee, M.H., Shiah, Y.C., Bai, C.J., 2016. Experiments and Numerical Simulations of the Rotor-Blade Performance for a Small-Scale Horizontal Axis Wind Turbine. J. Wind Eng. Ind. Aerod., 149, 17-29.
  • 16. Melo, D.B., Baltazar, J., de Campos, J.A.C.F., 2018. A Numerical Wake Alignment Method for Horizontal Axis Wind Turbines with the Lifting Line Theory. J. Wind Eng. Ind. Aerod., 174, 382-390.
  • 17. Kaya, M.N., Kose, F., Ingham, D., Ma, L., Pourkashanian, M., 2018. Aerodynamic Performance of a Horizontal Axis Wind Turbine with Forward and Backward Swept Blades. J. Wind Eng. Ind. Aerod., 176, 166-173.
  • 18. Pourrajabian, A., Ebrahimi, R., Mirzaei, M., 2014. Applying Micro Scales of Horizontal Axis Wind Turbines for Operation in Low Wind Speed Regions. Energy Convers. Manage., 87, 119-127.
  • 19. Li, Q., Murata, J., Endo, M., Maeda, T., Kamada, Y., 2016. Experimental and Numerical Investigation of the Effect of Turbulent Inflow on a Horizontal Axis Wind Turbine (Part I: Power Performance). Energy, 113, 713-722.
  • 20. Xie, W., Zeng, P., Lei, L., 2017. Wind Tunnel Testing and Improved Blade Element Momentum Method for Umbrella-type Rotor of Horizontal Axis Wind Turbine. Energy, 119, 334-350.
  • 21. Singh, R.K., Ahmed, M.R., Zullah, M.A., Lee, Y.H., 2012. Design of a Low Reynolds Number Airfoil for Small Horizontal Axis Wind Turbines. Renew. Energ., 42, 66-76.
  • 22. Karthikeyan, N., Murugavel, K.K., Kumar, S.A., Rajakumar, S., 2015. Review of Aerodynamic Developments on Small Horizontal Axis Wind Turbine Blade. Renew. Sust. Energ. Rev., 42, 801-822.
  • 23. Bilgili, M., Tontu, M., Sahin, B., 2021. Aerodynamic Rotor Performance of a 3300-kW Modern Commercial Large-scale Wind Turbine Installed in a Wind Farm. J. Energy Resour. Technol., 143, 031302.
  • 24. Ilhan, A., Bilgili, M., Sahin, B., 2018. Analysis of Aerodynamic Characteristics of 2 MW Horizontal Axis Large Wind Turbine. Wind Struct., 27(3), 187-197.
  • 25. Bilgili, M., Yasar, A., 2017. Performance Evaluation of a Horizontal Axis Wind Turbine in Operation. Int. J. Green Energy, 14(12), 1048-1056.
  • 26. Cooney, C., Byrne, R., Lyons, W., O’Rourke, F., 2017. Performance Characterization of a Commercial-scale Wind Turbine Operating in an Urban Environment. Using Real Data, Energy Sustain Dev, 36, 44-54.
  • 27. Sedaghat, A., Mirhosseini, M., 2012. Aerodynamic Design of a 300 kW Horizontal Axis Wind Turbine for Province of Semnan. Energy Convers. Manage., 63, 87-94.
  • 28. Taner, T., 2018. Economic Analysis of a Wind Power Plant. A Case Study for the Cappadocia Region, J. Mech. Sci., 32(3), 1379-1389.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Akın İlhan Bu kişi benim 0000-0003-3590-5291

Mehmet Bilgili Bu kişi benim

Melih Sarı Bu kişi benim 0000-0003-4148-2926

Beşir Şahin Bu kişi benim 0000-0003-0671-0890

Yayımlanma Tarihi 29 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA İlhan, A., Bilgili, M., Sarı, M., Şahin, B. (2021). Aerodynamic Analysis of Onshore Commercial Large Scale Wind Turbine. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 965-977. https://doi.org/10.21605/cukurovaumfd.1040660