Araştırma Makalesi
BibTex RIS Kaynak Göster

Kritik Enerji Tesislerinin Deprem Risk Değerlendirmesinde Farklı Hasargörebilirlik Fonksiyonlarının İncelenmesi

Yıl 2021, , 1019 - 1032, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1041673

Öz

Elektrik enerji tesisleri, deprem tehlikesinden dolayı hasar görme olasılığı yüksek kritik altyapılardan bir tanesidir. Sanayileşmenin yoğun olduğu Marmara bölgesinde çok sayıda elektrik enerji tesisleri bulunmaktadır. Bu çalışma kapsamında açık kaynaklı OpenQuake yazılımı kullanılarak, Marmara bölgesi için olasılıksal deprem tehlike analizi gerçekleştirilmiştir. Deprem tehlike analizinde, SHARE projesi ,2013 Avrupa-Akdeniz sismik tehlike modelinde tanımlanan (ESHM13) kaynak ve yerel zemin etkileri mantık ağacı modelleri ile dikkate alınmıştır. Çalışma kapsamında, Marmara bölgesinde yer alan tipik bir enerji üretim tesisi olan Bandırma-I Doğalgaz kombine çevrim santrali deprem tehlikesi analizi gerçekleştirilmiştir. Elde edilen sonuçlar, 2018-TBDY ve 2007-DBYBHY yönetmeliklerinde bulunan tasarım spektrumları ile karşılaştırılmıştır. Söz konusu tesiste, kritik yapı olan santral kontrol binası için farklı zemin durumu ve farklı hasargörebilirlik fonksiyonlarının dikkate alındığı deprem risk değerlendirmesi yapılmıştır. Marmara bölgesinde meydana gelebilecek olası deprem yer hareketi sonucu, dikkate alınan tesisin maruz kalacağı risklerin tespiti ve bu risklerin azaltılmasına yönelik faaliyetlerin geliştirilebilmesi için son derece kullanışlı olan kayıp eğrileri elde edilmiştir.

Kaynakça

  • 1. Massie, A., Watson, N.R., 2011. Impact of the Christchurch Earthquakes on the Electrical Power System Infrastructure. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4), 425-430.
  • 2. Watson, N.R., 2010. Impact of the Darfield Earthquake on the Electrical Power System Infrastructure. Bulletin of the New Zealand Society for Earthquake Engineering, 43(4), 421-424.
  • 3. Eidinger, J., Davis, C., Tang, A., Kempner, L., 2012. 9.0M Tohoku Earthquake, March 11, 2011, Performance of Water and Power Systems, http://www.geengineeringsystems. com/.
  • 4. Eidinger, J., Tang, A., O'Rourke, T., 2010. Technical Council on Lifeline Earthquake Engineering (TCLEE), Report of the 4 September 2010 Mw 7.1 Canterbury (Darfield), New Zealand Earthquake. In American Society of Civil Engineers, 1-49.
  • 5. Giovinazzi, S., Wilson, T.M., Davis, C., Bristow, D., Gallagher, M., Schofield, A., Tang, A., 2011. Lifelines Performance and Management Following the 22 February 2011 Christchurch Earthquake, New Zealand: Highlights of Resilience.
  • 6. Transpower (2011a). 4 September 2010 Darfield Earthquake. Lessons Learned. Transpower New Zealand Limited Internal Report, 30 March 2011.
  • 7. Transpower (2011b). 22 February 2011 Christchurch Earthquake Key Findings and Lessons Learned. Transpower New Zealand Limited Internal Report, 30 June 2011.
  • 8. Howard, S., Riker, C., Knight, B., Knoles, S., 2015. Innovative Analysis and Seismic Retrofit of 500kV Flexible Bus Substation Support Structures. In Electrical Transmission and Substation Structures 2015, 438-451.
  • 9. Shinozuka, M., Dong, X., Jin, X., Cheng, T.C., 2005. Seismic Performance Analysis for the Ladwp Power System. In 2005 IEEEPES Transmission & Distribution Conference & Exposition Asia and Pacific, 1-6.
  • 10. Park, J., Nojima, N., Reed, D.A., 2006. Nisqually Earthquake Electric Utility Analysis. Earthquake Spectra, 22(2), 491-509.
  • 11. Buriticá Cortés, J.A., Sánchez-Silva, M., Tesfamariam, S., 2015. A Hierarchy-based Approach to Seismic Vulnerability Assessment of Bulk Power Systems. Structure and Infrastructure Engineering, 11(10), 1352-1368.
  • 12. Kwasinski, A., Eidinger, J., Tang, A., Tudo-Bornarel, C., 2014. Performance of Electric Power Systems in the 2010-2011 Christchurch, New Zealand, Earthquake Sequence. Earthquake Spectra, 30, 205–230.
  • 13. Yesilyurt, A., Okuyan Akcan, S., Zulfikar, A., 2021. Rapid Power Outage Estimation for Typical Electric Power Systems in Turkey. Challenge Journal of Structural Mechanics, 7(2), 84-92.
  • 14. Holmgren, A.J., Molin, S., 2006. Using Disturbance Data to Assess Vulnerability of Electric Power Delivery Systems. Journal of Infrastructure Systems, 12(4), 243-251.
  • 15. Martins, L., Silva, V., 2020. Development of a Fragility and Vulnerability Model for Global Seismic Risk Analyses. Bull. Earthq. Eng.
  • 16. Silva, V., Crowley, H., Pagani, M., Modelli, D., Pinho, R., 2013b. Development of the OpenQuake Engine, the Global Earthquake Model’s Open-source Software for Seismic Risk Assessment, Natural Hazards . 17. Pinho, R., 2012. GEM: A Participatory Framework for Open, State-of-the-art Models and Tools for Earthquake Risk Assessment Worldwide. In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  • 18. Cornell, C.A., 1968. Engineering Seismic Risk Analysis. Bull Seismol Soc Am 58, 1583–1606.
  • 19. Yönetmeliği, TD. 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik. T.C. Çevre ve Şehircilik Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi.
  • 20. TBDY-2018, Deprem Etkisi Altında Binaların Tasarımı İçin Esaslar, http://www.resmigazete. gov.tr/eskiler/2018/03/20180318M1-2-1.pdf, 416, 2018.
  • 21. Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M.B., Hiemer, S., Meletti, C., Musson, R.W., Rovida, A.N., Sesetyan, K., Stucchi, M., 2015. The 2013 European Seismic Hazard Model: Key Components and Results, Bulletin of Earthquake Engineering, 13, 3553-3596. https://doi.org/10.1007/s10518-015-9795-1.
  • 22. Chiou, B.J., Youngs, R.R., 2008. An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 24(1), 173-215.
  • 23. FEMA 356 (Federal Emergency Management Agency), 2000. NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Washington DC.
  • 24. FEMA (Federal Emergency Management Agency), 2003. HAZUS-MH Technical Manual. Washington DC:
  • 25. Askan, A., Yucemen, M.S., 2010. Probabilistic Methods for the Estimation of Potential Seismic Damage: Application to Reinforced Concrete Buildings in Turkey, Struct. Saf., 32(4), 262–271.
  • 26. Bal, İ.E., Crowley, H., Pinho, R., Gülay, F.G., 2008. Detailed Assessment of Structural Characteristics of Turkish RC Building Stock for Loss Assessment Models, Soil Dynamics and Earthquake Engineering, 28(10-11), 914-932.
  • 27. Martins, L., Silva, V., Marques, M., Crowley, H., Delgado, R., 2016. Development and Assessment of Damage-to-loss Models for Moment-frame Reinforced Concrete Buildings. Earthquake Engineering & Structural Dynamics, 45(5), 797-817.

Investigation of Different Vulnerability Functions in Earthquake Risk Assessment of Critical Energy Facilities

Yıl 2021, , 1019 - 1032, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1041673

Öz

Electrical energy facilities are one of the critical infrastructures with a high probability of being damaged due to earthquake hazard. There are many electrical energy facilities in the Marmara region, where industrialization is intense. Within the scope of this study, probabilistic earthquake hazard analysis for the Marmara region was carried out using open source OpenQuake software. In the earthquake hazard analysis, source, and local ground effects as defined in the SHARE project, 2013 “Euro-Mediterranean seismic hazard model (ESHM13)” were considered together with the logic tree models. Within the scope of the study, the earthquake hazard analysis of Bandırma-I Natural Gas combined cycle power plant, which is a typical power generation facility in the Marmara region, was carried out and the results were compared with the Turkish earthquake codes (TSC-2007 and TBDY-2018) design spectra. The earthquake risk assessment was carried out for the power plant control building, which is the critical structure in the facility in question, considering different soil conditions and different vulnerability functions. As a result of possible earthquake ground motions that may occur in the Marmara region, loss curves have been obtained, which are extremely useful for the determination of the potential risks that the considered facility will be exposed to and for the development of risk mitigation activities

Kaynakça

  • 1. Massie, A., Watson, N.R., 2011. Impact of the Christchurch Earthquakes on the Electrical Power System Infrastructure. Bulletin of the New Zealand Society for Earthquake Engineering, 44(4), 425-430.
  • 2. Watson, N.R., 2010. Impact of the Darfield Earthquake on the Electrical Power System Infrastructure. Bulletin of the New Zealand Society for Earthquake Engineering, 43(4), 421-424.
  • 3. Eidinger, J., Davis, C., Tang, A., Kempner, L., 2012. 9.0M Tohoku Earthquake, March 11, 2011, Performance of Water and Power Systems, http://www.geengineeringsystems. com/.
  • 4. Eidinger, J., Tang, A., O'Rourke, T., 2010. Technical Council on Lifeline Earthquake Engineering (TCLEE), Report of the 4 September 2010 Mw 7.1 Canterbury (Darfield), New Zealand Earthquake. In American Society of Civil Engineers, 1-49.
  • 5. Giovinazzi, S., Wilson, T.M., Davis, C., Bristow, D., Gallagher, M., Schofield, A., Tang, A., 2011. Lifelines Performance and Management Following the 22 February 2011 Christchurch Earthquake, New Zealand: Highlights of Resilience.
  • 6. Transpower (2011a). 4 September 2010 Darfield Earthquake. Lessons Learned. Transpower New Zealand Limited Internal Report, 30 March 2011.
  • 7. Transpower (2011b). 22 February 2011 Christchurch Earthquake Key Findings and Lessons Learned. Transpower New Zealand Limited Internal Report, 30 June 2011.
  • 8. Howard, S., Riker, C., Knight, B., Knoles, S., 2015. Innovative Analysis and Seismic Retrofit of 500kV Flexible Bus Substation Support Structures. In Electrical Transmission and Substation Structures 2015, 438-451.
  • 9. Shinozuka, M., Dong, X., Jin, X., Cheng, T.C., 2005. Seismic Performance Analysis for the Ladwp Power System. In 2005 IEEEPES Transmission & Distribution Conference & Exposition Asia and Pacific, 1-6.
  • 10. Park, J., Nojima, N., Reed, D.A., 2006. Nisqually Earthquake Electric Utility Analysis. Earthquake Spectra, 22(2), 491-509.
  • 11. Buriticá Cortés, J.A., Sánchez-Silva, M., Tesfamariam, S., 2015. A Hierarchy-based Approach to Seismic Vulnerability Assessment of Bulk Power Systems. Structure and Infrastructure Engineering, 11(10), 1352-1368.
  • 12. Kwasinski, A., Eidinger, J., Tang, A., Tudo-Bornarel, C., 2014. Performance of Electric Power Systems in the 2010-2011 Christchurch, New Zealand, Earthquake Sequence. Earthquake Spectra, 30, 205–230.
  • 13. Yesilyurt, A., Okuyan Akcan, S., Zulfikar, A., 2021. Rapid Power Outage Estimation for Typical Electric Power Systems in Turkey. Challenge Journal of Structural Mechanics, 7(2), 84-92.
  • 14. Holmgren, A.J., Molin, S., 2006. Using Disturbance Data to Assess Vulnerability of Electric Power Delivery Systems. Journal of Infrastructure Systems, 12(4), 243-251.
  • 15. Martins, L., Silva, V., 2020. Development of a Fragility and Vulnerability Model for Global Seismic Risk Analyses. Bull. Earthq. Eng.
  • 16. Silva, V., Crowley, H., Pagani, M., Modelli, D., Pinho, R., 2013b. Development of the OpenQuake Engine, the Global Earthquake Model’s Open-source Software for Seismic Risk Assessment, Natural Hazards . 17. Pinho, R., 2012. GEM: A Participatory Framework for Open, State-of-the-art Models and Tools for Earthquake Risk Assessment Worldwide. In: Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
  • 18. Cornell, C.A., 1968. Engineering Seismic Risk Analysis. Bull Seismol Soc Am 58, 1583–1606.
  • 19. Yönetmeliği, TD. 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik. T.C. Çevre ve Şehircilik Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi.
  • 20. TBDY-2018, Deprem Etkisi Altında Binaların Tasarımı İçin Esaslar, http://www.resmigazete. gov.tr/eskiler/2018/03/20180318M1-2-1.pdf, 416, 2018.
  • 21. Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M.B., Hiemer, S., Meletti, C., Musson, R.W., Rovida, A.N., Sesetyan, K., Stucchi, M., 2015. The 2013 European Seismic Hazard Model: Key Components and Results, Bulletin of Earthquake Engineering, 13, 3553-3596. https://doi.org/10.1007/s10518-015-9795-1.
  • 22. Chiou, B.J., Youngs, R.R., 2008. An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra, 24(1), 173-215.
  • 23. FEMA 356 (Federal Emergency Management Agency), 2000. NEHRP Guidelines for the Seismic Rehabilitation of Buildings. Washington DC.
  • 24. FEMA (Federal Emergency Management Agency), 2003. HAZUS-MH Technical Manual. Washington DC:
  • 25. Askan, A., Yucemen, M.S., 2010. Probabilistic Methods for the Estimation of Potential Seismic Damage: Application to Reinforced Concrete Buildings in Turkey, Struct. Saf., 32(4), 262–271.
  • 26. Bal, İ.E., Crowley, H., Pinho, R., Gülay, F.G., 2008. Detailed Assessment of Structural Characteristics of Turkish RC Building Stock for Loss Assessment Models, Soil Dynamics and Earthquake Engineering, 28(10-11), 914-932.
  • 27. Martins, L., Silva, V., Marques, M., Crowley, H., Delgado, R., 2016. Development and Assessment of Damage-to-loss Models for Moment-frame Reinforced Concrete Buildings. Earthquake Engineering & Structural Dynamics, 45(5), 797-817.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdullah Can Zülfikar Bu kişi benim 0000-0001-6610-3334

Seyhan Okuyan Akcan Bu kişi benim

Ali Yeşilyurt Bu kişi benim 0000-0002-9442-1687

Murat Eröz Bu kişi benim 0000-0002-6328-7323

Tolga Cimilli Bu kişi benim 0000-0002-8037-9334

Yayımlanma Tarihi 29 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Zülfikar, A. C., Okuyan Akcan, S., Yeşilyurt, A., Eröz, M., vd. (2021). Kritik Enerji Tesislerinin Deprem Risk Değerlendirmesinde Farklı Hasargörebilirlik Fonksiyonlarının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 1019-1032. https://doi.org/10.21605/cukurovaumfd.1041673