Araştırma Makalesi
BibTex RIS Kaynak Göster

Fotovoltaik Bir Panelin Matlab@Simulink ile Modellenmesi ve Dış Ortam Koşullarındaki Davranışının İncelenmesi

Yıl 2022, , 471 - 482, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146412

Öz

Temiz ve yenilenebilir enerji kaynaklarından biri olan güneş enerjisi sera gazı emisyonu oluşturmaması, sınırsız kaynak potansiyeli ve kaynak erişilebilirliği gibi olumlu etkileri nedeniyle sıklıkla tercih edilmektedir. Bu nedenle ülkemizde güneş enerjisi santrallerinden elektrik üretimi oldukça yaygındır. Güneş enerjisinden elektrik üretimi, fotovoltaik (FV) hücrelerin güneş ışınımını elektrik enerjisine dönüştürmesi ile gerçekleşmektedir. Bu çalışmada Matlab@Simulink yazılımında modellenen monokristal (c-Si) yapıdaki bir FV panelin laboratuvar ve dış ortam koşullarındaki davranışları karşılaştırılmıştır. Daha sonra Osmaniye Korkut Ata Üniversitesi Mühendislik Fakültesi çatısına kurulan sistem ile dış ortam koşullarında bulunan FV panelin performans sonuçları incelenmiştir. Elde edilen sonuçlara göre model ve deneysel sistemin birbirleriyle uyumlu olduğu gözlemlenmiştir.

Kaynakça

  • 1. Yaniktepe, B., Kara, O., Ozalp, C., 2017. The Global Solar Radiation Estimation and Analysis of Solar Energy: Case Study for Osmaniye. Turkey, International Journal of Green Energy, 14, 765–773.
  • 2. Akpolat, A.N., Dursun, E., Kuzucuoğlu, A.E., Yang, Y., Blaabjerg, F., Baba, A.F., 2019. Performance Analysis of a Grid-Connected Rooftop Solar Photovoltaic System. Electronics, 8(8), 905.
  • 3. Kichou, S., Wolf, P., Silvestre, S., Chouder, A., 2018. Analysis of the Behaviour of Cadmium Telluride and Crystalline Silicon Photovoltaic Modules Deployed Outdoor under Humid Continental Climate Conditions. Solar Energy, 171, 681–691.
  • 4. Elibol, E., Özmen, Ö.T., Tutkun, N., Köysal, O., 2017. Outdoor Performance Analysis of Different PV Panel Types. Renewable and Sustainable Energy Reviews, 67, 651–66.
  • 5. Polo, J., Fernandez-Neira, W.G., Alonso-García, M.C., 2017. On the Use of Reference Modules as Irradiance Sensor for Monitoring and Modelling Rooftop PV Systems. Renewable Energy, 106, 186–191.
  • 6. Cañete, C., Carretero, J., Sidrach-de-Cardona, M., 2014. Energy Performance of Different Photovoltaic Module Technologies under Outdoor Conditions. Energy, 65, 295–302.
  • 7. Ustun, T.S., Nakamura, Y., Hashimoto, J., Otani, K., 2019. Performance Analysis of PV Panels based on Different Technologies After Two Years of Outdoor Exposure in Fukushima. Japan, Renewable Energy, 136, 159–178.
  • 8. Aboagye, B., Gyamfi, S., Ofosu, E.A., Djordevic, S., 2021. Degradation Analysis of Installed Solar Photovoltaic (PV) Modules under Outdoor Conditions in Ghana. Energy Reports, 7, 6921-6931.
  • 9. Gaglia, A. G., Lykoudis, S., Argiriou, A. A., Balaras, C. A., Dialynas, E., 2017. Energy Efficiency of PV Panels under Real Outdoor Conditions–an Experimental Assessment in Athens. Greece, Renewable Energy, 101, 236-243.
  • 10. T.C. Enerji ve Tabii Kaynaklar Bakanlığı, http://www.enerji.gov.tr/tr-TR/Sayfalar/Gunes, Son erişim tarihi 17.01.2022
  • 11. https://www.enerjiatlasi.com/gunes-enerjisi-haritasi/osmaniye, Son erişim tarihi 17.01.2022
  • 12. Bellini, A., Bifaretti, S., Iacovone, V., Cornaro, C., 2009. Simplified Model of a Photovoltaic Module. Applied Electronics International Conference, 47–52.
  • 13. Celik, A.N., Acikgoz, N., 2007. Modelling and Experimental Verification of the Operating Current of Mono-crystalline Photovoltaic Modules using Four- and Five-parameter Models. Applied Energy, 84, 1–15.

Modeling of Photovoltaic Panel with Matlab@Simulink and Investigation of Behaviour in Outdoor Conditions

Yıl 2022, , 471 - 482, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146412

Öz

Solar energy, which is one of the clean and renewable energy sources, is frequently preferred due to its positive effects such as not generating greenhouse gas emissions, unlimited resource potential and resource accessibility. Therefore, electricity generation from solar power plants is quite common in our country. The generation of electricity from solar energy occurs by converting solar radiation into electrical energy from photovoltaic (PV) cells. In this study, the behavior of a monocrystalline (c-Si) PV panel modeled in the Matlab@Simulink software under laboratory and outdoor conditions was compared. Then, the performance results of the system installed on the roof of Osmaniye Korkut Ata University Engineering Faculty and the PV panel in outdoor conditions were examined. According to the results, it was observed that the model and the experimental system were compatible with each other.

Kaynakça

  • 1. Yaniktepe, B., Kara, O., Ozalp, C., 2017. The Global Solar Radiation Estimation and Analysis of Solar Energy: Case Study for Osmaniye. Turkey, International Journal of Green Energy, 14, 765–773.
  • 2. Akpolat, A.N., Dursun, E., Kuzucuoğlu, A.E., Yang, Y., Blaabjerg, F., Baba, A.F., 2019. Performance Analysis of a Grid-Connected Rooftop Solar Photovoltaic System. Electronics, 8(8), 905.
  • 3. Kichou, S., Wolf, P., Silvestre, S., Chouder, A., 2018. Analysis of the Behaviour of Cadmium Telluride and Crystalline Silicon Photovoltaic Modules Deployed Outdoor under Humid Continental Climate Conditions. Solar Energy, 171, 681–691.
  • 4. Elibol, E., Özmen, Ö.T., Tutkun, N., Köysal, O., 2017. Outdoor Performance Analysis of Different PV Panel Types. Renewable and Sustainable Energy Reviews, 67, 651–66.
  • 5. Polo, J., Fernandez-Neira, W.G., Alonso-García, M.C., 2017. On the Use of Reference Modules as Irradiance Sensor for Monitoring and Modelling Rooftop PV Systems. Renewable Energy, 106, 186–191.
  • 6. Cañete, C., Carretero, J., Sidrach-de-Cardona, M., 2014. Energy Performance of Different Photovoltaic Module Technologies under Outdoor Conditions. Energy, 65, 295–302.
  • 7. Ustun, T.S., Nakamura, Y., Hashimoto, J., Otani, K., 2019. Performance Analysis of PV Panels based on Different Technologies After Two Years of Outdoor Exposure in Fukushima. Japan, Renewable Energy, 136, 159–178.
  • 8. Aboagye, B., Gyamfi, S., Ofosu, E.A., Djordevic, S., 2021. Degradation Analysis of Installed Solar Photovoltaic (PV) Modules under Outdoor Conditions in Ghana. Energy Reports, 7, 6921-6931.
  • 9. Gaglia, A. G., Lykoudis, S., Argiriou, A. A., Balaras, C. A., Dialynas, E., 2017. Energy Efficiency of PV Panels under Real Outdoor Conditions–an Experimental Assessment in Athens. Greece, Renewable Energy, 101, 236-243.
  • 10. T.C. Enerji ve Tabii Kaynaklar Bakanlığı, http://www.enerji.gov.tr/tr-TR/Sayfalar/Gunes, Son erişim tarihi 17.01.2022
  • 11. https://www.enerjiatlasi.com/gunes-enerjisi-haritasi/osmaniye, Son erişim tarihi 17.01.2022
  • 12. Bellini, A., Bifaretti, S., Iacovone, V., Cornaro, C., 2009. Simplified Model of a Photovoltaic Module. Applied Electronics International Conference, 47–52.
  • 13. Celik, A.N., Acikgoz, N., 2007. Modelling and Experimental Verification of the Operating Current of Mono-crystalline Photovoltaic Modules using Four- and Five-parameter Models. Applied Energy, 84, 1–15.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlyas Aladağ Bu kişi benim 0000-0003-1897-4332

Bület Yanıktepe Bu kişi benim 0000-0001-8958-4687

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Aladağ, İ., & Yanıktepe, B. (2022). Fotovoltaik Bir Panelin Matlab@Simulink ile Modellenmesi ve Dış Ortam Koşullarındaki Davranışının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 471-482. https://doi.org/10.21605/cukurovaumfd.1146412