Araştırma Makalesi
BibTex RIS Kaynak Göster

Nanoakışkan Hacimsel Oranının ve Parçacık Boyutunun Gövde Borulu Isı Değiştiricisindeki Isı Transferine Etkisinin Deneysel ve Sayısal İncelenmesi

Yıl 2023, , 531 - 543, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1334131

Öz

Bu deneysel çalışmanın amacı, farklı parametrelerin gövde borulu ısı değiştiricisinde meydana gelen ısı transferine ve akış özelliklerine etkisini sayısal olarak incelemek ve deneysel olarak doğrulamaktır. Çalışmada kullanılan parametreler; sıcak akışkan Re sayısı, TiO2/H2O nanoakışkanın hacimsel konsantrasyonu ve nanoakışkan oluşturulmasında kullanılan nanoparçacık boyutudur. Çalışmanın sayısal sonuçları ANSYS Fluent Hesaplamalı Akışkanlar Dinamiği programını kullanılarak elde edilmiş ve deneysel sonuçlarla doğrulanmıştır. Çalışmanın birinci aşamasında yapılan deneysel çalışmada; farklı Re sayılarının (Re=1000, 1500, 2000, 2200) gövde borulu ısı değiştiricisi etkinliğine olan etkisi incelenmiştir. Çalışmanın ikinci aşamasında; sayısal sonuçlar deney sonuçları ile doğrulanmış ve farklı iki parametrenin (nanoakışkan hacimsel konsantrasyonu (%0,2, 0,4, 0,8, 1,6) ve nanoparçacık boyutu (Dp=5, 10, 20 40 nm) ısı değiştiricisi etkinliğine olan etkisi incelenmiştir. Sonuç olarak; sıcak akışkan giriş sıcaklığı Tsıcak,giriş=50 ℃’de sabit iken Re sayısı Re=1000-2200 aralığında arttırıldığında ısı transfer etkinliğinde %6,15 azalma tespit edilmiştir. Sayısal olarak oluşturulan Dp=10 nm parçacık boyutlu TiO2/H2O nanoakışkanı için sabit giriş sıcaklığı (Tsıcak,giriş=50 ℃), sabit Re sayısında (Re=1000) nanoparçacık hacimsel konsantrasyonu φ=%0,2-1,6 aralığında arttırıldığında ısı transfer etkinliğinde %8 artış tespit edilmiştir. Nanoparçacık boyutunun etkisini incelemek için aynı şartlarda ve φ=0,2 hacimsel konsantrasyonda parçacık boyutu Dp=5-40 aralığında arttırıldığında ısı transfer etkinliğinde %1 azalma tespit edilmiştir. Bu çalışma sonucunda elde edilen veriler kullanılarak gelecekte, daha yüksek performanslı ısı değiştiricilerin tasarlanabileceği değerlendirilmiştir.

Kaynakça

  • 1. Mohammadi, M.H., Abbasi, H.R., Yavarinasab, A., Pourrahmani, H., 2020. Thermal Optimization of Shell and Tube Heat Eexchanger Using Porous Baffles. Applied Thermal Engineering, 170, 115005.
  • 2. Slimene, M.B., Poncet, S., Bessrour, J., Kallel, F., 2022. Numerical Investigation of the Flow Dynamics and Heat Transfer in a Rectangular Shell-and-Tube Heat Exchanger. Case Studies in Thermal Engineering, 32, 101873.
  • 3. Fares, M., Mohammad, A.M., Mohammed, A.S., 2020. Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated with Graphene Nanofluids. Case Studies in Thermal Engineering, 18, 100584.
  • 4. Ozden, E., Tari, I., 2010. Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger. Energy Conversion and Management, 51(5), 1004-1014.
  • 5. Said, Z., Rahman, S.M.A., Assad, M.E.H., Alami, A.H., 2019. Heat Transfer Enhancement and Life Cycle Analysis of a Shell-and-Tube Heat Exchanger using Stable Cuo/Water Nanofluid. Sustainable Energy Technologies and Assessments, 31, 306-317.
  • 6. Safari, V., Abolghasemi, H., Darvishvand, L., Kamkari, B., 2021. Thermal Performance Investigation of Concentric and Eccentric Shell and Tube Heat Exchangers with Different Fin Configurations Containing Phase Change Material. Journal of Energy Storage, 37, 102458.
  • 7. Xie, G.N., Wang, Q.W., Zeng, M., Luo, L.Q., 2007. Heat Transfer Analysis for Shell-and-Tube Heat Exchangers with Experimental Data by Artificial Neural Networks Approach. Applied Thermal Engineering, 27(5-6), 1096-1104.
  • 8. Yu, C., Zhang, H., Zeng, M., Wang, R., Gao, B., 2020. Numerical Study on Turbulent Heat Transfer Performance of a New Compound Parallel Flow Shell and Tube Heat Exchanger with Longitudinal Vortex Generator. Applied Thermal Engineering, 164, 114449.
  • 9. Bahiraei, M., Naseri, M., Monavari, A., 2022. Thermal-Hydraulic Performance of a Nanofluid in a Shell-and-Tube Heat Exchanger Equipped with New Trapezoidal Inclined Baffles: Nanoparticle Shape Effect. Powder Technology, 395, 348-359.
  • 10. Arani, A.A.A., Moradi, R., 2019. Shell and Tube Heat Exchanger Optimization Using New Baffle and Tube Configuration. Applied Thermal Engineering, 157, 113736.
  • 11. Wang, W., Shuai, Y., Li, B., Li, B., Lee, K.S., 2021. Enhanced Heat Transfer Performance for Multi-Tube Heat Exchangers with Various Tube Arrangements. International Journal of Heat and Mass Transfer, 168, 120905.
  • 12. Deng, S., Nie, C., Wei, G., Ye, W.B., 2019. Improving the Melting Performance of a Horizontal Shell-Tube Latent-Heat Thermal Energy Storage Unit using Local Enhanced Finned Tube. Energy and Buildings, 183, 161-173.
  • 13. Abbasi, H.R., Sedeh, E.S., Pourrahmani, H., Mohammadi, M.H., 2020. Shape Optimization of Segmental Porous Baffles for Enhanced Thermo-Hydraulic Performance of Shell-and-Tube Heat Exchanger. Applied Thermal Engineering, 180, 115835.
  • 14. Nallusamy, S., 2017. Characterization of Al2O3/Water Nanofluid Through Shell and Tube Heat Exchangers over Parallel and Counter Flow. In Journal of Nano Research, 45, 155-163.
  • 15. Alazwari, M.A., Safaei, M.R., 2021. Combination Effect of Baffle Arrangement and Hybrid Nanofluid on Thermal Performance of a Shell and Tube Heat Exchanger Using 3-D Homogeneous Mixture Model. Mathematics, 9(8), 881.
  • 16. Barzegarian, R., Aloueyan, A., Yousefi, T., 2017. Thermal Performance Augmentation Using Water Based Al2O3-Gamma Nanofluid in a Horizontal Shell and Tube Heat Exchanger Under Forced Circulation. International Communications in Heat and Mass Transfer, 86, 52-59.
  • 17. Bahiraei, M., Naseri, M., Monavari, A., 2022. Thermal-Hydraulic Performance of a Nanofluid in a Shell-and-Tube Heat Exchanger Equipped with New Trapezoidal Inclined Baffles: Nanoparticle Shape Effect. Powder Technology, 395, 348-359.
  • 18. Amini, R., Amini, M., Jafarinia, A., Kashfi, M., 2018. Numerical Investigation on Effects of Using Segmented and Helical Tube Fins on Thermal Performance and Efficiency of a Shell and Tube Heat Exchanger. Applied Thermal Engineering, 138, 750-760.
  • 19. Ullah, M.R., Ishtiaq, T.M., Mamun, M.A.H., 2019. Heat Transfer Enhancement in Shell and Tube Heat Exchanger by Using Al2O3/Water and Tio2/Water Nanofluid. In AIP Conference Proceedings, 2121(1), 070018.
  • 20. Dharmalingam, R., Sivagnanaprabhu, K.K., Yogaraja, J., Gunasekaran, S., Mohan, R., 2015. Experimental Investigation of Heat Transfer Characteristics of Nanofluid Using Parallel Flow, Counter Flow and Shell and Tube Heat Exchanger. Archive of Mechanical Engineering, 62(4), 509-522.
  • 21. Sajadi, A.R., Kazemi, M.H., 2011. Investigation of Turbulent Convective Heat Transfer and Pressure Drop of Tio2/Water Nanofluid in Circular Tube. International Communications in Heat and Mass Transfer, 38(10), 1474-1478.
  • 22. Das, S.K., Putra, N., Thiesen, P., Roetzel, W., 2003. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transfer, 125(4), 567-574.
  • 23. Kristiawan, B., Rifa'i, A.I., Enoki, K., Wijayanta, A.T., Miyazaki, T., 2020. Enhancing the Thermal Performance of Tio2/Water Nanofluids Flowing in a Helical Microfin Tube. Powder Technology, 376, 254-262.
  • 24. Arani, A.A., Amani, J., 2013. Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of Tio2–Water Nanofluid. Experimental Thermal and Fluid Science, 44, 520-533.
  • 25. Kulkarni, D.P., Das, D.K., Vajjha, R.S., 2009. Application of Nanofluids in Heating Buildings and Reducing Pollution. Applied Energy, 86(12), 2566-2573.
  • 26. Cruz, P.A.D., Yamat, E.J.E., Nuqui, J.P.E., Soriano, A.N., 2022. Computational Fluid Dynamics (CFD) Analysis of the Heat Transfer and Fluid Flow of Copper (II) Oxide-Water Nanofluid in a Shell and Tube Heat Exchanger. Digital Chemical Engineering, 3, 100014.
  • 27. Zolfagharnasab, M.H., Pedram, M.Z., Hoseinzadeh, S., Vafai, K., 2022. Application of Porous-Embedded Shell and Tube Heat Exchangers for the Waste Heat Recovery Systems. Applied Thermal Engineering, 211, 118452.
  • 28. Safari, V., Kamkari, B., Abolghasemi, H., 2022. Investigation of the Effects of Shell Geometry and Tube Eccentricity on Thermal Energy Storage in Shell and Tube Heat Exchangers. Journal of Energy Storage, 52, 104978.
  • 29. Zhou, W., Mohammed, H.I., Chen, S., Luo, M., Wu, Y., 2022. Effects of Mechanical Vibration on the Heat Transfer Performance of Shell-and-Tube Latent Heat Thermal Storage Units During Charging Process. Applied Thermal Engineering, 216, 119133.
  • 30. Moya-Rico, J.D., Molina, A.E., Córcoles, J.I., Almendros-Ibáñez, J.A., 2022. Experimental Characterization of a Double Tube Heat Exchanger with Different Corrugated Tubes and Shells. International Journal of Thermal Sciences, 179, 107640.
  • 31. Ch, P.B., Cho, Y.I., 1998. Experimental Heat Transfer: A Journal of Thermal Energy Transport, Storage, and Conversion Hydrodynamic Generation and Heat Transfer Study of Dispersed Fluids with Sumicron Metalic Oxide. Therm. Energy, 11(2), 151-70.
  • 32. Batchelor, G.K., 1977. The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles. Journal of Fluid Mechanics, 83(1), 97-117.
  • 33. Wang, B.X., Zhou, L.P., Peng, X.F., 2006. Surface and Size Effects on the Specific Heat Capacity of Nanoparticles. International Journal of Thermophysics, 27, 139-151.
  • 34. Corcione, M., 2011. Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids. Energy Conversion and Management, 52(1), 789-793.

Experimental and Numerical Investigation of the Effect of Nanofluid Volume Ratio and Particle Size on Heat Transfer in a Shell-and-Tube Heat Exchanger

Yıl 2023, , 531 - 543, 28.07.2023
https://doi.org/10.21605/cukurovaumfd.1334131

Öz

The aim of this experimental study is to numerically examine and experimentally verify the effects of different parameters on the heat transfer and flow properties performing in the shell and tube heat exchanger. The parameters used in the study; Re number of the hot fluid, volumetric concentration of the TiO2/H2O nanofluid, and nanoparticle size used in the producing of nanofluid. The numerical results of this study were obtained using the ANSYS Fluent Computational Fluid Dynamics program and verified with the experimental results. In the experimental study which is carried out in the first step; the effect of different Re numbers (Re=1000, 1500, 2000, 2200) on the effectiveness of the shell-tube heat exchanger was investigated. In the second step of the study; the numerical results were verified with the experimental results and the effects of two different parameters (the volumetric concentration of the nanofluid (0.2%, 0.4, 0.8, 1.6) and the nanoparticle size (Dp=5, 10, 20 40 nm)) were investigated on the heat exchanger effectiveness. As a result; when hot fluid inlet temperature is constant (Th,in=50 ℃), increasing Re number in the range of Re=1000-2200 caused a decrease by 6.15% in the heat transfer effectiveness. When volume concentration ratio of the nanofluid was increased in the range of φ=0.2-1.6%, the heat transfer effectiveness improved by 8.0% for the numerically created TiO2/H2O nanofluid with Dp=10 nm particle size for constant temperature (Th,in=50 ℃) and constant Re number (Re=1000). In order to examine the effect of nanoparticle size, 1.0% decrease in heat transfer effectiveness was determined when the particle size was increased in the range of Dp=5-40 under the same conditions and at volumetric concentration of φ=0.2%. Using the data obtained as a result of this study, it is evaluated that higher performance heat exchangers can be designed in the future.

Kaynakça

  • 1. Mohammadi, M.H., Abbasi, H.R., Yavarinasab, A., Pourrahmani, H., 2020. Thermal Optimization of Shell and Tube Heat Eexchanger Using Porous Baffles. Applied Thermal Engineering, 170, 115005.
  • 2. Slimene, M.B., Poncet, S., Bessrour, J., Kallel, F., 2022. Numerical Investigation of the Flow Dynamics and Heat Transfer in a Rectangular Shell-and-Tube Heat Exchanger. Case Studies in Thermal Engineering, 32, 101873.
  • 3. Fares, M., Mohammad, A.M., Mohammed, A.S., 2020. Heat Transfer Analysis of a Shell and Tube Heat Exchanger Operated with Graphene Nanofluids. Case Studies in Thermal Engineering, 18, 100584.
  • 4. Ozden, E., Tari, I., 2010. Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger. Energy Conversion and Management, 51(5), 1004-1014.
  • 5. Said, Z., Rahman, S.M.A., Assad, M.E.H., Alami, A.H., 2019. Heat Transfer Enhancement and Life Cycle Analysis of a Shell-and-Tube Heat Exchanger using Stable Cuo/Water Nanofluid. Sustainable Energy Technologies and Assessments, 31, 306-317.
  • 6. Safari, V., Abolghasemi, H., Darvishvand, L., Kamkari, B., 2021. Thermal Performance Investigation of Concentric and Eccentric Shell and Tube Heat Exchangers with Different Fin Configurations Containing Phase Change Material. Journal of Energy Storage, 37, 102458.
  • 7. Xie, G.N., Wang, Q.W., Zeng, M., Luo, L.Q., 2007. Heat Transfer Analysis for Shell-and-Tube Heat Exchangers with Experimental Data by Artificial Neural Networks Approach. Applied Thermal Engineering, 27(5-6), 1096-1104.
  • 8. Yu, C., Zhang, H., Zeng, M., Wang, R., Gao, B., 2020. Numerical Study on Turbulent Heat Transfer Performance of a New Compound Parallel Flow Shell and Tube Heat Exchanger with Longitudinal Vortex Generator. Applied Thermal Engineering, 164, 114449.
  • 9. Bahiraei, M., Naseri, M., Monavari, A., 2022. Thermal-Hydraulic Performance of a Nanofluid in a Shell-and-Tube Heat Exchanger Equipped with New Trapezoidal Inclined Baffles: Nanoparticle Shape Effect. Powder Technology, 395, 348-359.
  • 10. Arani, A.A.A., Moradi, R., 2019. Shell and Tube Heat Exchanger Optimization Using New Baffle and Tube Configuration. Applied Thermal Engineering, 157, 113736.
  • 11. Wang, W., Shuai, Y., Li, B., Li, B., Lee, K.S., 2021. Enhanced Heat Transfer Performance for Multi-Tube Heat Exchangers with Various Tube Arrangements. International Journal of Heat and Mass Transfer, 168, 120905.
  • 12. Deng, S., Nie, C., Wei, G., Ye, W.B., 2019. Improving the Melting Performance of a Horizontal Shell-Tube Latent-Heat Thermal Energy Storage Unit using Local Enhanced Finned Tube. Energy and Buildings, 183, 161-173.
  • 13. Abbasi, H.R., Sedeh, E.S., Pourrahmani, H., Mohammadi, M.H., 2020. Shape Optimization of Segmental Porous Baffles for Enhanced Thermo-Hydraulic Performance of Shell-and-Tube Heat Exchanger. Applied Thermal Engineering, 180, 115835.
  • 14. Nallusamy, S., 2017. Characterization of Al2O3/Water Nanofluid Through Shell and Tube Heat Exchangers over Parallel and Counter Flow. In Journal of Nano Research, 45, 155-163.
  • 15. Alazwari, M.A., Safaei, M.R., 2021. Combination Effect of Baffle Arrangement and Hybrid Nanofluid on Thermal Performance of a Shell and Tube Heat Exchanger Using 3-D Homogeneous Mixture Model. Mathematics, 9(8), 881.
  • 16. Barzegarian, R., Aloueyan, A., Yousefi, T., 2017. Thermal Performance Augmentation Using Water Based Al2O3-Gamma Nanofluid in a Horizontal Shell and Tube Heat Exchanger Under Forced Circulation. International Communications in Heat and Mass Transfer, 86, 52-59.
  • 17. Bahiraei, M., Naseri, M., Monavari, A., 2022. Thermal-Hydraulic Performance of a Nanofluid in a Shell-and-Tube Heat Exchanger Equipped with New Trapezoidal Inclined Baffles: Nanoparticle Shape Effect. Powder Technology, 395, 348-359.
  • 18. Amini, R., Amini, M., Jafarinia, A., Kashfi, M., 2018. Numerical Investigation on Effects of Using Segmented and Helical Tube Fins on Thermal Performance and Efficiency of a Shell and Tube Heat Exchanger. Applied Thermal Engineering, 138, 750-760.
  • 19. Ullah, M.R., Ishtiaq, T.M., Mamun, M.A.H., 2019. Heat Transfer Enhancement in Shell and Tube Heat Exchanger by Using Al2O3/Water and Tio2/Water Nanofluid. In AIP Conference Proceedings, 2121(1), 070018.
  • 20. Dharmalingam, R., Sivagnanaprabhu, K.K., Yogaraja, J., Gunasekaran, S., Mohan, R., 2015. Experimental Investigation of Heat Transfer Characteristics of Nanofluid Using Parallel Flow, Counter Flow and Shell and Tube Heat Exchanger. Archive of Mechanical Engineering, 62(4), 509-522.
  • 21. Sajadi, A.R., Kazemi, M.H., 2011. Investigation of Turbulent Convective Heat Transfer and Pressure Drop of Tio2/Water Nanofluid in Circular Tube. International Communications in Heat and Mass Transfer, 38(10), 1474-1478.
  • 22. Das, S.K., Putra, N., Thiesen, P., Roetzel, W., 2003. Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J. Heat Transfer, 125(4), 567-574.
  • 23. Kristiawan, B., Rifa'i, A.I., Enoki, K., Wijayanta, A.T., Miyazaki, T., 2020. Enhancing the Thermal Performance of Tio2/Water Nanofluids Flowing in a Helical Microfin Tube. Powder Technology, 376, 254-262.
  • 24. Arani, A.A., Amani, J., 2013. Experimental Investigation of Diameter Effect on Heat Transfer Performance and Pressure Drop of Tio2–Water Nanofluid. Experimental Thermal and Fluid Science, 44, 520-533.
  • 25. Kulkarni, D.P., Das, D.K., Vajjha, R.S., 2009. Application of Nanofluids in Heating Buildings and Reducing Pollution. Applied Energy, 86(12), 2566-2573.
  • 26. Cruz, P.A.D., Yamat, E.J.E., Nuqui, J.P.E., Soriano, A.N., 2022. Computational Fluid Dynamics (CFD) Analysis of the Heat Transfer and Fluid Flow of Copper (II) Oxide-Water Nanofluid in a Shell and Tube Heat Exchanger. Digital Chemical Engineering, 3, 100014.
  • 27. Zolfagharnasab, M.H., Pedram, M.Z., Hoseinzadeh, S., Vafai, K., 2022. Application of Porous-Embedded Shell and Tube Heat Exchangers for the Waste Heat Recovery Systems. Applied Thermal Engineering, 211, 118452.
  • 28. Safari, V., Kamkari, B., Abolghasemi, H., 2022. Investigation of the Effects of Shell Geometry and Tube Eccentricity on Thermal Energy Storage in Shell and Tube Heat Exchangers. Journal of Energy Storage, 52, 104978.
  • 29. Zhou, W., Mohammed, H.I., Chen, S., Luo, M., Wu, Y., 2022. Effects of Mechanical Vibration on the Heat Transfer Performance of Shell-and-Tube Latent Heat Thermal Storage Units During Charging Process. Applied Thermal Engineering, 216, 119133.
  • 30. Moya-Rico, J.D., Molina, A.E., Córcoles, J.I., Almendros-Ibáñez, J.A., 2022. Experimental Characterization of a Double Tube Heat Exchanger with Different Corrugated Tubes and Shells. International Journal of Thermal Sciences, 179, 107640.
  • 31. Ch, P.B., Cho, Y.I., 1998. Experimental Heat Transfer: A Journal of Thermal Energy Transport, Storage, and Conversion Hydrodynamic Generation and Heat Transfer Study of Dispersed Fluids with Sumicron Metalic Oxide. Therm. Energy, 11(2), 151-70.
  • 32. Batchelor, G.K., 1977. The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles. Journal of Fluid Mechanics, 83(1), 97-117.
  • 33. Wang, B.X., Zhou, L.P., Peng, X.F., 2006. Surface and Size Effects on the Specific Heat Capacity of Nanoparticles. International Journal of Thermophysics, 27, 139-151.
  • 34. Corcione, M., 2011. Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids. Energy Conversion and Management, 52(1), 789-793.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil), Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Mustafa Kılıç Bu kişi benim 0000-0002-8006-149X

Mahir Şahin Bu kişi benim 0000-0002-9565-9160

Yayımlanma Tarihi 28 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kılıç, M., & Şahin, M. (2023). Nanoakışkan Hacimsel Oranının ve Parçacık Boyutunun Gövde Borulu Isı Değiştiricisindeki Isı Transferine Etkisinin Deneysel ve Sayısal İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 531-543. https://doi.org/10.21605/cukurovaumfd.1334131