Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Current Limiting Algorithm with Anti-Windup Control for Transient Stability of Grid-Forming Converters

Yıl 2023, , 671 - 681, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377721

Öz

In modern power grids, renewable energy sources (RESs) are integrated to the grid through voltage source converters (VSCs) with grid-forming capabilities. Grid forming VSCs’ weak overcurrent capability revealed the need for current limiting techniques under large disturbances like short-circuit faults. However, current saturation algorithms induce transient instabilities due to the AC voltage controller windup issue when the current is saturated. Therefore, analyzing the transient stability of the grid-forming units in case of fault conditions is crucial for ensuring the reliable and secure operation of the grid. This paper investigates the effects of the current limiting algorithm with anti-windup control to handle transient instabilities during fault conditions. An elaborated theoretical analysis of the presented system is performed by considering different case studies. The simulations are conducted by using Matlab/Simulink software to test the validity of the presented system. The obtained results highlight the advantages of an anti-windup controller during current saturation mode.

Kaynakça

  • 1. Çelik, Ö., Zor, K., Tan, A., Teke, A., 2022. A Novel Gene Expression Programming-Based MPPT Technique for PV Micro-Inverter Applications Under Fast-Changing Atmospheric Conditions. Solar Energy, 239, 268-282.
  • 2. Çelik, Ö., Teke, A., Tan, A., 2018. Overview of Micro-Inverters as A Challenging Technology in Photovoltaic Applications. Renewable and Sustainable Energy Reviews, 82, 3191-3206.
  • 3. Reddy, H., Sharma, S., 2021. Implementation of Adaptive Neuro Fuzzy Controller for Fuel Cell Based Electric Vehicles. Gazi University Journal of Science, 34(1), 112-126.
  • 4. Huang, L., Xin, H., Wang, Z., Zhang, L., Wu, K., Hu, J., 2017. Transient Stability Analysis and Control Design of Droop-Controlled Voltage Source Converters Considering Current Limitation. IEEE Transactions on Smart Grid, 10(1), 578-591.
  • 5. Rocabert, J., Luna, A., Blaabjerg, F., Rodriguez, P., 2012. Control of Power Converters in AC Microgrids. IEEE Transactions on Power Electronics, 27(11), 4734-4749.
  • 6. Rosso, R., Wang, X., Liserre, M., Lu, X., Engelken, S., 2020. Grid-Forming Converters: An Overview of Control Approaches and Future Trends. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 4292-4299.
  • 7. Zarei, S.F., Mokhtari, H., Ghasemi, M.A., Peyghami, S., Davari, P., Blaabjerg, F., 2019. Control of Grid-Following Inverters Under Unbalanced Grid Conditions. IEEE Transactions on Energy Conversion, 35(1), 184-192.
  • 8. Rosso, R., Wang, X., Liserre, M., Lu, X., Engelken, S., 2021. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends-A Review. IEEE Open Journal of Industry Applications, 2, 93-109.
  • 9. Vatta Kkuni, K., 2021. Assessment and Augmentation of Power Converter Control Towards Enhanced Power System Stability. PhD Thesis, Technical University of Denmark.
  • 10. Zhang, L., Harnefors, L., Nee, H.P., 2010. Interconnection of Two Very Weak AC Systems by VSC-HVDC Links using Power-Synchronization Control. IEEE Transactions on Power Systems, 26(1), 344-355.
  • 11. Qoria, T., Gruson, F., Colas, F., Kestelyn, X., Guillaud, X., 2020. Current Limiting Algorithms and Transient Stability Analysis of Grid-Forming VSCs. Electric Power Systems Research, 189, 106726.
  • 12. Paquette, A.D., Divan, D.M., 2014. Virtual Impedance Current Limiting for Inverters in Microgrids with Synchronous Generators. IEEE Transactions on Industry Applications, 51(2), 1630-1638.
  • 13. Xiong, X., Wu, C., Blaabjerg, F., 2021. Effects of Virtual Resistance on Transient Stability of Virtual Synchronous Generators under Grid Voltage Sag. IEEE Transactions on Industrial Electronics, 69(5), 4754-4764.
  • 14. Sati, T.E., Azzouz, M.A., 2022. An Adaptive Virtual Impedance Fault Current Limiter for Optimal Protection Coordination of Islanded Microgrids. IET Renewable Power Generation, 16(8), 1719-1732.
  • 15. Zhuang, K., Xin, H., Hu, P., Wang, Z., 2022. Current Saturation Analysis and Anti-Windup Control Design of Grid-Forming Voltage Source Converter. IEEE Transactions on Energy Conversion, 37(4), 2790-2802.
  • 16. Zhong, Q.C., Konstantopoulos, G.C., 2016. Current-Limiting Droop Control of Grid-Connected Inverters. IEEE Transactions on Industrial Electronics, 64(7), 5963-5973.
  • 17. Tayyebi, A., Groß, D., Anta, A., Kupzog, F., Dörfler, F., 2019. Interactions of Grid-Forming Power Converters and Synchronous Machines. arXiv preprint arXiv, 1902, 10750.
  • 18. Du, W., Chen, Z., Schneider, K.P., Lasseter, R. H., Nandanoori, S.P., Tuffner, F.K., Kundu, S., 2019. A Comparative Study of Two Widely Used Grid-Forming Droop Controls on Microgrid Small-Signal Stability. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 963-975.
  • 19. Pogaku, N., Prodanovic, M., Green, T.C., 2007. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Transactions on power electronics, 22(2), 613-625.
  • 20. Ghoshal, A., John, V., 2010. Anti-Windup Schemes for Proportional Integral and Proportional Resonant Controller. National Power Electronıc Conference, 2010.

Şebeke-Şekillendirici Dönüştürücülerin Geçici Durum Kararlılığı için Anti-Windup Kontrollü Akım Sınırlama Algoritmasının Analizi

Yıl 2023, , 671 - 681, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377721

Öz

Modern güç şebekelerinde, yenilenebilir enerji kaynakları (YEK'ler) şebeke oluşturma kabiliyetine sahip gerilim kaynağı dönüştürücüleri (VSC'ler) aracılığıyla şebekeye entegre edilmektedir. Şebeke oluşturan VSC'lerin düşük aşırı akım kapasitesi, kısa devre arızaları gibi büyük bozulmalar altında akım sınırlama tekniklerine olan ihtiyacı ortaya çıkarmıştır. Ancak, akım doyum algoritmaları, akım doyuma ulaştığında AC gerilim kontrolörünün windup sorunu nedeniyle geçici kararsızlıklara neden olur. Bu nedenle, arıza durumlarında şebeke oluşturan birimlerin geçici kararlılığının analiz edilmesi, şebekenin güvenilir ve emniyetli çalışmasını sağlamak için çok önemlidir. Bu makale, arıza koşulları sırasında geçici kararsızlıkların üstesinden gelmek için windup önleyici kontrollü akım sınırlama algoritmasının etkilerini araştırmaktadır. Sunulan sistemin ayrıntılı bir teorik analizi, farklı vaka çalışmaları dikkate alınarak gerçekleştirilmiştir. Simülasyonlar, sunulan sistemin geçerliliğini doğrulamak için Matlab/Simulink yazılımı kullanılarak gerçekleştirilmiştir. Elde edilen sonuçlar, akım doygunluk modu sırasında bir windup önleyici kontrolörün avantajlarını vurgulamaktadır.

Kaynakça

  • 1. Çelik, Ö., Zor, K., Tan, A., Teke, A., 2022. A Novel Gene Expression Programming-Based MPPT Technique for PV Micro-Inverter Applications Under Fast-Changing Atmospheric Conditions. Solar Energy, 239, 268-282.
  • 2. Çelik, Ö., Teke, A., Tan, A., 2018. Overview of Micro-Inverters as A Challenging Technology in Photovoltaic Applications. Renewable and Sustainable Energy Reviews, 82, 3191-3206.
  • 3. Reddy, H., Sharma, S., 2021. Implementation of Adaptive Neuro Fuzzy Controller for Fuel Cell Based Electric Vehicles. Gazi University Journal of Science, 34(1), 112-126.
  • 4. Huang, L., Xin, H., Wang, Z., Zhang, L., Wu, K., Hu, J., 2017. Transient Stability Analysis and Control Design of Droop-Controlled Voltage Source Converters Considering Current Limitation. IEEE Transactions on Smart Grid, 10(1), 578-591.
  • 5. Rocabert, J., Luna, A., Blaabjerg, F., Rodriguez, P., 2012. Control of Power Converters in AC Microgrids. IEEE Transactions on Power Electronics, 27(11), 4734-4749.
  • 6. Rosso, R., Wang, X., Liserre, M., Lu, X., Engelken, S., 2020. Grid-Forming Converters: An Overview of Control Approaches and Future Trends. In 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 4292-4299.
  • 7. Zarei, S.F., Mokhtari, H., Ghasemi, M.A., Peyghami, S., Davari, P., Blaabjerg, F., 2019. Control of Grid-Following Inverters Under Unbalanced Grid Conditions. IEEE Transactions on Energy Conversion, 35(1), 184-192.
  • 8. Rosso, R., Wang, X., Liserre, M., Lu, X., Engelken, S., 2021. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends-A Review. IEEE Open Journal of Industry Applications, 2, 93-109.
  • 9. Vatta Kkuni, K., 2021. Assessment and Augmentation of Power Converter Control Towards Enhanced Power System Stability. PhD Thesis, Technical University of Denmark.
  • 10. Zhang, L., Harnefors, L., Nee, H.P., 2010. Interconnection of Two Very Weak AC Systems by VSC-HVDC Links using Power-Synchronization Control. IEEE Transactions on Power Systems, 26(1), 344-355.
  • 11. Qoria, T., Gruson, F., Colas, F., Kestelyn, X., Guillaud, X., 2020. Current Limiting Algorithms and Transient Stability Analysis of Grid-Forming VSCs. Electric Power Systems Research, 189, 106726.
  • 12. Paquette, A.D., Divan, D.M., 2014. Virtual Impedance Current Limiting for Inverters in Microgrids with Synchronous Generators. IEEE Transactions on Industry Applications, 51(2), 1630-1638.
  • 13. Xiong, X., Wu, C., Blaabjerg, F., 2021. Effects of Virtual Resistance on Transient Stability of Virtual Synchronous Generators under Grid Voltage Sag. IEEE Transactions on Industrial Electronics, 69(5), 4754-4764.
  • 14. Sati, T.E., Azzouz, M.A., 2022. An Adaptive Virtual Impedance Fault Current Limiter for Optimal Protection Coordination of Islanded Microgrids. IET Renewable Power Generation, 16(8), 1719-1732.
  • 15. Zhuang, K., Xin, H., Hu, P., Wang, Z., 2022. Current Saturation Analysis and Anti-Windup Control Design of Grid-Forming Voltage Source Converter. IEEE Transactions on Energy Conversion, 37(4), 2790-2802.
  • 16. Zhong, Q.C., Konstantopoulos, G.C., 2016. Current-Limiting Droop Control of Grid-Connected Inverters. IEEE Transactions on Industrial Electronics, 64(7), 5963-5973.
  • 17. Tayyebi, A., Groß, D., Anta, A., Kupzog, F., Dörfler, F., 2019. Interactions of Grid-Forming Power Converters and Synchronous Machines. arXiv preprint arXiv, 1902, 10750.
  • 18. Du, W., Chen, Z., Schneider, K.P., Lasseter, R. H., Nandanoori, S.P., Tuffner, F.K., Kundu, S., 2019. A Comparative Study of Two Widely Used Grid-Forming Droop Controls on Microgrid Small-Signal Stability. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 963-975.
  • 19. Pogaku, N., Prodanovic, M., Green, T.C., 2007. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Transactions on power electronics, 22(2), 613-625.
  • 20. Ghoshal, A., John, V., 2010. Anti-Windup Schemes for Proportional Integral and Proportional Resonant Controller. National Power Electronıc Conference, 2010.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji
Bölüm Makaleler
Yazarlar

Özgür Çelik 0000-0002-7683-2415

Yayımlanma Tarihi 18 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çelik, Ö. (2023). Analysis of Current Limiting Algorithm with Anti-Windup Control for Transient Stability of Grid-Forming Converters. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 671-681. https://doi.org/10.21605/cukurovaumfd.1377721