Araştırma Makalesi
BibTex RIS Kaynak Göster

Combination of Conventional Ball Mill and Stirred Mill to Obtain Ultra-Fine Talc

Yıl 2023, , 683 - 693, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377725

Öz

In this study, it was investigated that talc ore could ground to very fine sizes using a combination of conventional ball mill and vertical stirred mill. Firstly, the conventional ball mill parameters such as mill speed (% of critical speed), material filling ratio (Jb), ball filling ratio (fc), ball size distribution (10-20-30-40 mm, %), grinding aid ratio (% of powder) and grinding time (min.) were optimized using classic experimental design. As a result of the optimization, fine talc product was obtained with d90=93.52 µm particle size. In the second stage, the ball mill product was re-milled using a stirred mill. As a result of study, a final ultra-fine talc powder was obtained after 60 minutes grinding time with d50=1.85 µm particle size and 14058 cm2/g total surface area. It has been seen that the conventional ball mill+stirred mill combination effective a process to obtain talc powder that suitable for industrial use.

Kaynakça

  • 1. Mio, H., Kano, J., Saito, F., 2004. Scale-up Method of Planetary Ball Mill. Chemical Engineering Science, 59, 5909-5916.
  • 2. Varlık Makine, Classifiers, http://www.varlikmakina.com/kompletesisler, Erişim Tarihi: Mart 2010.
  • 3. Gao, M.W., Weller, K.R., 1996. A Comparison of Tumbling Mills and Stirred Ball Mills for Wet Grinding. The Fifth Mill Operators. Conference, AusIMM, Roxby Downs, 16-20 October, Australia.
  • 4. Wang, Y., Forssberg, E., 2007. Enhancement of Energy Efficiency for Mechanical Production of Fine and Ultra-Fine Particles in Comminution. China Particuology, 5, 193-201.
  • 5. Austin L.G., Bagga, P., 1981. An Analysis of Fine Dry Grinding in Ball Mills. Powder Technology, 28(1), 83-90.
  • 6. Kotake, N., Kuboki, M., Kiya, S., Kanda, Y., 2011. Influence of Dry and Wet Grinding Conditions on Fineness and Shape of Particle Size Distribution of Product in a Ball Mill. Advanced Powder Technology, 22, 86-92.
  • 7. Qian, H.Y., Kong, Q.G., Zhang, B.L., 2013. The Effects of Grinding Media Shapes on the Grinding Kinetics of Cement Clinker in Ball Mill. Powder Technology, 235, 422-425.
  • 8. Guzzo, P.L., Santos, J.B., David, R.C., 2014. Particle Size Distribution and Structural Changes in Limestone Ground in Planetary Ball Mill. International Journal of Mineral Processing, 126, 41-48.
  • 9. Mulenga, F.K., 2017. Sensitivity Analysis of Austin's Scale-Up Model for Tumbling Ball Mills-Part 1. Effects of Batch Grinding Parameters. Powder Technology, 311, 398-407.
  • 10. Bu, X., Chen, Y., Ma, G., Sun, Y., Ni, C., Xie, G., 2020. Wet and Dry Grinding of Coal in a Laboratory-Scale Ball Mill: Particle-Size Distributions. Powder Technology, 359, 305-313.
  • 11. Ucurum, M., Gulec, O., Cingitas, M., 2015. Wet Grindability of Calcite to Ultra-Fine Sizes in Conventional Ball Mill. Particulate Science and Technology, 33, 342-348.
  • 12. Öksüzoğlu, B., Uçurum, M., 2016. An Experimental Study on the Ultra-Fine Grinding of Gypsum Ore in a Dry Ball Mill. Powder Technology, 291, 186-192.
  • 13. Ucurum, M., Ozdemir, A., Teke, Ç., Tekin, I., 2021. A Novel Approach to Finding Optimum Operating Conditions of Design Factors for The Grinding Experiment. Particulate Science and Technology, 39(2), 204-212.
  • 14. Gökçe, B., Taşgetiren, S., 2009. Kalite İçin Deney Tasarımı. Electronic Journal of Machine Technologies, 6(1), 71-83.
  • 15. Güngör, B.V., 2003. Genetik Algoritmalarla Optimizasyon ve Bir Örnek Uygulama. Yüksek Lisans Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • 16. Dikmen, S., Ergün, Ş.L., 2004. Stirred Ball Mills. Madencilik, 43(4), 3-15.
  • 17. Stenger, F., Mende, S., Schwedes, J., Peukert, W., 2005. Nanomilling in Stirred Media Mills. Chem. Eng. Sci., 60, 4557-4565.
  • 18. Zheng, J., Harris, C.C., Somasundaran, P., 1996. A Study on Grinding and Energy Input in Stirred Media Mills. Powder Technology, 86, 171-178.
  • 19. Kwade, A., 1999. Wet comminution in Stirred Media Mills: Research and Its Practical Application. Powder Technology, 105, 14-20.
  • 20. Pilevneli, C.C., Kizgut, S., Toroglu, I., Çuhadaroglu, D., Yigit, E., 2004. Open and Closed Circuit Dry Grinding of Cement Mill Rejects in A Pilot Scale Vertical Stirred Mill. Powder Technology, 139, 165-174.
  • 21. Choi, H., Lee, W., Kim, D.U., Kumar, S., Kim, S.S., Chung, H.S., Kim, J.H., Ahn, Y.C., 2010. Effect of Grinding Aids on the Grinding Energy Consumed During Grinding of Calcite in a Stirred Ball Mill. Miner. Eng., 23, 54-57.
  • 22. Gokcen, H.S., Cayirli, S., Ucbas, Y., Kayaci, K., 2015. The Effect of Grinding Aids on Dry Micro Fine Grinding of Feldspar. Int. J. Miner. Process., 136, 42-44.
  • 23. Kinnarinen, T., Tuunila, R., Huhtanen, M., Häkkinen, A., Kejik, P., Sverak, T., 2015. Wet Grinding of CaCO3 with a Stirred Media Mill: Influence of Obtained Particle Size Distributions on Pressure Filtration Properties. Powder Technology, 273, 54-61.
  • 24. Grim, R.E., 1968. Clay Mineralogy, 2nd Edition. McGraw-Hill, New York, 596.
  • 25. Şirinoğlu, Y., Örgün, Y., Erarslan, C., Koçbulut, F., 2017. Türkiye’de Üretilen Talk Cevherlerinin Mineralojik ve Kimyasal Karakteristiklerinin Sağlık Açısından Değerlendirilmesi. 70th Geological Congress of Turkey, 10-14 Nisan 2017, Ankara, 60-67.
  • 26. Jankovic, A., Sinclair, S., 2006. The Shape of Product Size Distributions in Stirred Mills. Minerals Engineering, 19, 1528-1536.
  • 27. Karbstein, H., Mueller, F., Polke, R., 1996. Producing Suspensions with Steep Particle Size Distributions in Fines Ranges. Aufbereitungs-Technik, 36, 464-473.
  • 28. Adi, H., Larson, I., Stewart, P., 2007. Use of Milling and Wet Sieving to Produce Narrow Particle Size Distributions of Lactose Monohydrate in The Sub-Sieve Range. Powder Technology, 179, 95-99.
  • 29. Nesset, D.P., Radziszewski, J.A., Hardie, P., Leroux, C., 2006. Assessing the Performance and Efficiency of Fine Grinding Technologies. 38th Annu. Can. Miner. Process, Oper. Conf., Ottawa, Canada, 283-310.
  • 30. Werner, R., 2000. Effect of Extenders with Narrow and Broad Particle Size Distributions on the Properties of Coatings. J. Coatings Technol., 72, 71-76.
  • 31. Kotake, N., Kuboki, M., Kiya, S., Kanda, Y., 2011. Influence of Dry and Wet Grinding Conditions on Fineness and Shape of Particle Size Distribution of Product in a Ball Mill. Advanced Powder Technology, 22, 86-92.
  • 32. Filio, J.M., Sugiyama, K., Saito, F., Waseda, Y. 1994. A Study on Talc Ground by Tumbling and Planetary Ball Mills. Powder Technology, 78(2), 121-127.
  • 33. Elbendari, A.M., El-Mofty, S.E., Abd El-Rahman, Mohamed, M.K., Abdel-Khalek A., 2016. Parameters Affecting Wet Ultra-Fine Grinding of Talc Ore. International Journal of Scientific & Engineering Research, 7(4), 1171-1179.
  • 34. Bayel Katırcıoğlu, D., 2020. Karıştırmalı Bilyalı Değirmende Kuru Öğütmede Bazı Öğütme Parametrelerinin Modellenmesi ve Optimizasyonu. NÖHÜ Müh. Bilim. Dergisi, 9(2), 1026-1038.

Bilyeli Değirmen ve Karıştırmalı Değirmen Kombinasyonu ile Çok İnce Talk Üretimi

Yıl 2023, , 683 - 693, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377725

Öz

Bu çalışmada, konvansiyonel bilyeli değirmen ve dik karıştırmalı değirmen kombinasyonu kullanılarak talk cevherinin çok ince boyutlara öğütülebileceği araştırılmıştır. İlk olarak, değirmen hızı (kritik hızın %'si), malzeme doluluk oranı (Jb), bilye doluluk oranı (fc), bilye boyut dağılımı (10-20-30-40 mm, %), öğütme yardımcısı gibi geleneksel bilyeli değirmen parametreleri klasik deneysel tasarım kullanılarak optimize edilmiştir. Optimizasyon sonucunda d90=93.52 µm partikül boyutuna sahip ince talk ürünü elde edilmiştir. Çalışmanın ikinci aşamasında ise bilyeli değirmen ürünü dik karıştırmalı değirmen kullanılarak yeniden öğütülmüştür. Çalışma sonucunda, 60 dakika öğütme ile d50 değeri1.85 µm olan ve 14058 cm2/g toplam yüzey alanına sahip çok ince talk ürünü elde edilmiştir. Çalışmanın sonunda konvansiyonel bilyeli değirmen+karıştırmalı değirmen kombinasyonunun endüstriyel kullanıma uygun çok ince talk eldesi için etkili bir teknoloji olduğu ortaya konulmuştur.

Kaynakça

  • 1. Mio, H., Kano, J., Saito, F., 2004. Scale-up Method of Planetary Ball Mill. Chemical Engineering Science, 59, 5909-5916.
  • 2. Varlık Makine, Classifiers, http://www.varlikmakina.com/kompletesisler, Erişim Tarihi: Mart 2010.
  • 3. Gao, M.W., Weller, K.R., 1996. A Comparison of Tumbling Mills and Stirred Ball Mills for Wet Grinding. The Fifth Mill Operators. Conference, AusIMM, Roxby Downs, 16-20 October, Australia.
  • 4. Wang, Y., Forssberg, E., 2007. Enhancement of Energy Efficiency for Mechanical Production of Fine and Ultra-Fine Particles in Comminution. China Particuology, 5, 193-201.
  • 5. Austin L.G., Bagga, P., 1981. An Analysis of Fine Dry Grinding in Ball Mills. Powder Technology, 28(1), 83-90.
  • 6. Kotake, N., Kuboki, M., Kiya, S., Kanda, Y., 2011. Influence of Dry and Wet Grinding Conditions on Fineness and Shape of Particle Size Distribution of Product in a Ball Mill. Advanced Powder Technology, 22, 86-92.
  • 7. Qian, H.Y., Kong, Q.G., Zhang, B.L., 2013. The Effects of Grinding Media Shapes on the Grinding Kinetics of Cement Clinker in Ball Mill. Powder Technology, 235, 422-425.
  • 8. Guzzo, P.L., Santos, J.B., David, R.C., 2014. Particle Size Distribution and Structural Changes in Limestone Ground in Planetary Ball Mill. International Journal of Mineral Processing, 126, 41-48.
  • 9. Mulenga, F.K., 2017. Sensitivity Analysis of Austin's Scale-Up Model for Tumbling Ball Mills-Part 1. Effects of Batch Grinding Parameters. Powder Technology, 311, 398-407.
  • 10. Bu, X., Chen, Y., Ma, G., Sun, Y., Ni, C., Xie, G., 2020. Wet and Dry Grinding of Coal in a Laboratory-Scale Ball Mill: Particle-Size Distributions. Powder Technology, 359, 305-313.
  • 11. Ucurum, M., Gulec, O., Cingitas, M., 2015. Wet Grindability of Calcite to Ultra-Fine Sizes in Conventional Ball Mill. Particulate Science and Technology, 33, 342-348.
  • 12. Öksüzoğlu, B., Uçurum, M., 2016. An Experimental Study on the Ultra-Fine Grinding of Gypsum Ore in a Dry Ball Mill. Powder Technology, 291, 186-192.
  • 13. Ucurum, M., Ozdemir, A., Teke, Ç., Tekin, I., 2021. A Novel Approach to Finding Optimum Operating Conditions of Design Factors for The Grinding Experiment. Particulate Science and Technology, 39(2), 204-212.
  • 14. Gökçe, B., Taşgetiren, S., 2009. Kalite İçin Deney Tasarımı. Electronic Journal of Machine Technologies, 6(1), 71-83.
  • 15. Güngör, B.V., 2003. Genetik Algoritmalarla Optimizasyon ve Bir Örnek Uygulama. Yüksek Lisans Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • 16. Dikmen, S., Ergün, Ş.L., 2004. Stirred Ball Mills. Madencilik, 43(4), 3-15.
  • 17. Stenger, F., Mende, S., Schwedes, J., Peukert, W., 2005. Nanomilling in Stirred Media Mills. Chem. Eng. Sci., 60, 4557-4565.
  • 18. Zheng, J., Harris, C.C., Somasundaran, P., 1996. A Study on Grinding and Energy Input in Stirred Media Mills. Powder Technology, 86, 171-178.
  • 19. Kwade, A., 1999. Wet comminution in Stirred Media Mills: Research and Its Practical Application. Powder Technology, 105, 14-20.
  • 20. Pilevneli, C.C., Kizgut, S., Toroglu, I., Çuhadaroglu, D., Yigit, E., 2004. Open and Closed Circuit Dry Grinding of Cement Mill Rejects in A Pilot Scale Vertical Stirred Mill. Powder Technology, 139, 165-174.
  • 21. Choi, H., Lee, W., Kim, D.U., Kumar, S., Kim, S.S., Chung, H.S., Kim, J.H., Ahn, Y.C., 2010. Effect of Grinding Aids on the Grinding Energy Consumed During Grinding of Calcite in a Stirred Ball Mill. Miner. Eng., 23, 54-57.
  • 22. Gokcen, H.S., Cayirli, S., Ucbas, Y., Kayaci, K., 2015. The Effect of Grinding Aids on Dry Micro Fine Grinding of Feldspar. Int. J. Miner. Process., 136, 42-44.
  • 23. Kinnarinen, T., Tuunila, R., Huhtanen, M., Häkkinen, A., Kejik, P., Sverak, T., 2015. Wet Grinding of CaCO3 with a Stirred Media Mill: Influence of Obtained Particle Size Distributions on Pressure Filtration Properties. Powder Technology, 273, 54-61.
  • 24. Grim, R.E., 1968. Clay Mineralogy, 2nd Edition. McGraw-Hill, New York, 596.
  • 25. Şirinoğlu, Y., Örgün, Y., Erarslan, C., Koçbulut, F., 2017. Türkiye’de Üretilen Talk Cevherlerinin Mineralojik ve Kimyasal Karakteristiklerinin Sağlık Açısından Değerlendirilmesi. 70th Geological Congress of Turkey, 10-14 Nisan 2017, Ankara, 60-67.
  • 26. Jankovic, A., Sinclair, S., 2006. The Shape of Product Size Distributions in Stirred Mills. Minerals Engineering, 19, 1528-1536.
  • 27. Karbstein, H., Mueller, F., Polke, R., 1996. Producing Suspensions with Steep Particle Size Distributions in Fines Ranges. Aufbereitungs-Technik, 36, 464-473.
  • 28. Adi, H., Larson, I., Stewart, P., 2007. Use of Milling and Wet Sieving to Produce Narrow Particle Size Distributions of Lactose Monohydrate in The Sub-Sieve Range. Powder Technology, 179, 95-99.
  • 29. Nesset, D.P., Radziszewski, J.A., Hardie, P., Leroux, C., 2006. Assessing the Performance and Efficiency of Fine Grinding Technologies. 38th Annu. Can. Miner. Process, Oper. Conf., Ottawa, Canada, 283-310.
  • 30. Werner, R., 2000. Effect of Extenders with Narrow and Broad Particle Size Distributions on the Properties of Coatings. J. Coatings Technol., 72, 71-76.
  • 31. Kotake, N., Kuboki, M., Kiya, S., Kanda, Y., 2011. Influence of Dry and Wet Grinding Conditions on Fineness and Shape of Particle Size Distribution of Product in a Ball Mill. Advanced Powder Technology, 22, 86-92.
  • 32. Filio, J.M., Sugiyama, K., Saito, F., Waseda, Y. 1994. A Study on Talc Ground by Tumbling and Planetary Ball Mills. Powder Technology, 78(2), 121-127.
  • 33. Elbendari, A.M., El-Mofty, S.E., Abd El-Rahman, Mohamed, M.K., Abdel-Khalek A., 2016. Parameters Affecting Wet Ultra-Fine Grinding of Talc Ore. International Journal of Scientific & Engineering Research, 7(4), 1171-1179.
  • 34. Bayel Katırcıoğlu, D., 2020. Karıştırmalı Bilyalı Değirmende Kuru Öğütmede Bazı Öğütme Parametrelerinin Modellenmesi ve Optimizasyonu. NÖHÜ Müh. Bilim. Dergisi, 9(2), 1026-1038.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstriyel Hammaddeler, Maden Tasarımı, İşletme ve Ekonomisi
Bölüm Makaleler
Yazarlar

Ömer Güleç 0000-0003-4607-6919

Öner Yusuf Toraman 0000-0003-3585-7023

Metin Uçurum 0000-0002-0725-9344

Yayımlanma Tarihi 18 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Güleç, Ö., Toraman, Ö. Y., & Uçurum, M. (2023). Combination of Conventional Ball Mill and Stirred Mill to Obtain Ultra-Fine Talc. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 683-693. https://doi.org/10.21605/cukurovaumfd.1377725