Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effect of Edge Width on Compressive Strength of FCC Structured Specimens Produced with FDM

Yıl 2023, , 851 - 858, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377804

Öz

In this study, the effect of different edge widths of face-centered cubic (FCC) lattice structures, manufactured using the Fused Deposition Modeling (FDM) method with PLA material, on compressive strength was investigated using 3D printing technology. As the edge width increased, an increase in maximum compressive loads and compressive strengths was observed. The lowest load was measured as 2849 N for the sample with a 1,2 mm edge width, while the highest load was recorded as 6351 N for the sample with a 2,4 mm edge width. Similarly, the lowest compressive stress was 34,76 MPa for the 1,2 mm edge width, and the highest compressive stress was 40,15 MPa for the 2,4 mm edge width. An increase in edge width led to a 33,1% increase in the maximum load-to-mass ratio. The results emphasize the significance of edge width as a design parameter in 3D printing production, suggesting that wider edge widths could enhance the mechanical robustness of products and cater to application-specific requirements. This study highlights the importance of considering edge width during the design phase, and further investigations involving various sample designs or material selections could provide deeper insights into the influence of edge width on compressive strength.

Kaynakça

  • 1. Mohanavel, V., Ashraff Ali, K.S., Ranganathan, K., Allen Jeffrey, J., Ravikumar, M.M., Rajkumar, S., 2021. The Roles and Applications of Additive Manufacturing in the Aerospace and Automobile Sector. Materials Today: Proceedings, 47, 405-409.
  • 2. Bandyopadhyay, A., Heer, B., 2018. Additive Manufacturing of Multi-material Structures. Materials Science and Engineering R: Reports, 129,1-16.
  • 3. Yusuf, S. M., Cutler, S., Gao, N., 2019. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals, 9(12),1286.
  • 4. Penumakala, P.K., Santo, J., Thomas, A., 2020. A Critical Review on the Fused Deposition Modeling of Thermoplastic Polymer Composites. Composites Part B: Engineering, 201, 108336.
  • 5. Demirci, E., Şenaysoy, S., Tuğcu, S.E., 2023. the Effect of Nozzle Diameter and Layer Thickness on Mechanical Behavi̇our of 3d Printed Pla Lattice Structures Under Quasi-Static Loading. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 105-113.
  • 6. Phan, D.D., Horner, J.S., Swain, Z.R., Beris, A. N., Mackay, M.E., 2020. Computational Fluid Dynamics Simulation of the Melting Process in the Fused Filament Fabrication Additive Manufacturing Technique. Additive Manufacturing, 33, 101161.
  • 7. Ergene, B., Bolat, C., 2023. Simulation of Fused Deposition Modeling of Glass Fiber Reinforced ABS Impact Samples: The Effect of Fiber Ratio, Infill Rate, and Infill Pattern on Warpage and Residual Stresses. Hittite Journal of Science and Engineering, 10(1), 21-31.
  • 8. Ergene, B., Yalçın, B., 2023. Investigation on Mechanical Performances of Various Cellular Structures Produced with Fused Deposition Modeling (FDM). Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 201-217.
  • 9. Çakan, B.G., Ensarioglu, C., Küçükakarsu, V. M., Tekin, I.E., Cemal Çakir, M., 2021. Experimental and Numerical Investigation of In-Plane and Out-of-Plane Impact Behaviour of Auxetic Honeycomb Boxes Produced by Material Extrusion. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1657-1667.
  • 10. Borikar, G.P., Patil, A.R., Kolekar, S.B., 2023. Additively Manufactured Lattice Structures and Materials : Present Progress and Future Scope. Korean Society for Precision Engineering.
  • 11. Sun, Z.P., Guo, Y.B., Shim, V.P.W., 2021. Characterisation and Modeling of Additively-Manufactured Polymeric Hybrid Lattice Structures for Energy Absorption. International Journal of Mechanical Sciences, 191.
  • 12. Wang, P., Yang, F., Li, P., Zheng, B., Fan, H. 2021. Design and Additive Manufacturing of a Modified Face-Centered Cubic Lattice with Enhanced Energy Absorption Capability. Extreme Mechanics Letters, 47, 101358.
  • 13. Tutar, M., 2023. A Comparative Evaluation of the Effects of Manufacturing Parameters on Mechanical Properties of Additively Manufactured PA and CF-Reinforced PA Materials. Polymers, 15, 38.
  • 14. Chen, L.Y., Liang, S.X., Liu, Y., Zhang, L.C., 2021. Additive Manufacturing of Metallic Lattice Structures: Unconstrained Design, Accurate Fabrication, Fascinated Performances, and Challenges. Materials Science and Engineering R: Reports, 146, 100648.
  • 15. Verma, S., Yang, C.K., Lin, C.H., Jeng, J.Y., 2022. Additive Manufacturing of Lattice Structures for High Strength Mechanical Interlocking of Metal and Resin During Injection Molding. Additive Manufacturing, 49, 102463.
  • 16. Zhang, J., Huang, H., Liu, G., Zong, H., Zhang, C., 2021. Stiffness and Energy Absorption of Additive Manufactured Hybrid Lattice Structures. Virtual and Physical Prototyping, 16(4), 428-443.
  • 17. Cho, S.G., Lee, J.S., 2021. FEM Analysis of 3D Lattice Structures of ABS Material, Turkish Journal of Computer and Mathematics Education, 12(6), 648-652.
  • 18. Dönmez, A., 2022. Production and Characterization of Simple, Face Centered and Diamond Cubic Lattices by Fused Deposition Modeling Using Polylactic Acid.Yüksek Lisans Tezi. Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Mühendislik Bilimleri Ana Bilim Dalı, 94.
  • 19. Aziz, A.R., Zhou, J., Thorne, D., Cantwell, W. J., 2021. Geometrical Scaling Effects in the Mechanical Properties of 3d-Printed Body-Centered Cubic (BCC) Lattice Structures. Polymers, 13(22), 3967.
  • 20. Bouteldja, A., Louar, M.A., Hemmouche, L., Gilson, L., Miranda-Vicario, A., Rabet, L., 2023. Experimental Investigation of the Quasi-Static and Dynamic Compressive Behavior of Polymer-Based 3D-Printed Lattice Structures. International Journal of Impact Engineering, 180, 104640.
  • 21. Garcia, R.F., Chua, A., 2022. High Compressive Strength 3D Printed Infill Based on Strut-Based Lattice Structure. ASEAN Engineering Journal, 12(4), 89-94.

EYM ile Üretilen YMK Yapılı Numunelerde Kenar Genişliğinin Basma Dayanımı Üzerine Etkisinin Araştırılması

Yıl 2023, , 851 - 858, 18.10.2023
https://doi.org/10.21605/cukurovaumfd.1377804

Öz

Bu çalışmada, 3 boyutlu baskı (3D printing) kullanılarak üretilen farklı kenar genişliklerine sahip yüzey merkezli kübik YMK yapılı numunelerin basma dayanımı üzerindeki etkisi incelenmiştir. PLA malzemesi kullanılarak Eriyik Yığma Modellemesi (EYM) yöntemi ile numuneler üretilmiştir. Kenar genişliği arttıkça, maksimum basma yüklerinde ve basma dayanımlarında artışlar gözlenmiştir. En düşük yük 1,2 mm kenar genişliğinde 2849 N iken, en yüksek yük 2,4 mm kenar genişliğinde 6351 N olarak ölçülmüştür. Benzer şekilde, en düşük basma gerilimi 34,76 MPa ile 1,2 mm kenar genişliğinde, en yüksek basma gerilimi ise 40,15 MPa ile 2,4 mm kenar genişliğinde kaydedilmiştir. Kenar genişliğinin artmasıyla birlikte maksimum yük/kütle değeri %33,1 oranında artış göstermiştir. Sonuçlar, 3D baskı üretiminde kenar genişliğinin tasarım faktörü olarak önemini vurgularken, daha geniş kenar genişliklerinin ürünlerin mekanik dayanıklılığını artırabileceğini ve uygulama gereksinimlerine uygunluğunu sağlayabileceğini göstermiştir.

Kaynakça

  • 1. Mohanavel, V., Ashraff Ali, K.S., Ranganathan, K., Allen Jeffrey, J., Ravikumar, M.M., Rajkumar, S., 2021. The Roles and Applications of Additive Manufacturing in the Aerospace and Automobile Sector. Materials Today: Proceedings, 47, 405-409.
  • 2. Bandyopadhyay, A., Heer, B., 2018. Additive Manufacturing of Multi-material Structures. Materials Science and Engineering R: Reports, 129,1-16.
  • 3. Yusuf, S. M., Cutler, S., Gao, N., 2019. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals, 9(12),1286.
  • 4. Penumakala, P.K., Santo, J., Thomas, A., 2020. A Critical Review on the Fused Deposition Modeling of Thermoplastic Polymer Composites. Composites Part B: Engineering, 201, 108336.
  • 5. Demirci, E., Şenaysoy, S., Tuğcu, S.E., 2023. the Effect of Nozzle Diameter and Layer Thickness on Mechanical Behavi̇our of 3d Printed Pla Lattice Structures Under Quasi-Static Loading. International Journal of 3D Printing Technologies and Digital Industry, 7(1), 105-113.
  • 6. Phan, D.D., Horner, J.S., Swain, Z.R., Beris, A. N., Mackay, M.E., 2020. Computational Fluid Dynamics Simulation of the Melting Process in the Fused Filament Fabrication Additive Manufacturing Technique. Additive Manufacturing, 33, 101161.
  • 7. Ergene, B., Bolat, C., 2023. Simulation of Fused Deposition Modeling of Glass Fiber Reinforced ABS Impact Samples: The Effect of Fiber Ratio, Infill Rate, and Infill Pattern on Warpage and Residual Stresses. Hittite Journal of Science and Engineering, 10(1), 21-31.
  • 8. Ergene, B., Yalçın, B., 2023. Investigation on Mechanical Performances of Various Cellular Structures Produced with Fused Deposition Modeling (FDM). Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 201-217.
  • 9. Çakan, B.G., Ensarioglu, C., Küçükakarsu, V. M., Tekin, I.E., Cemal Çakir, M., 2021. Experimental and Numerical Investigation of In-Plane and Out-of-Plane Impact Behaviour of Auxetic Honeycomb Boxes Produced by Material Extrusion. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(3), 1657-1667.
  • 10. Borikar, G.P., Patil, A.R., Kolekar, S.B., 2023. Additively Manufactured Lattice Structures and Materials : Present Progress and Future Scope. Korean Society for Precision Engineering.
  • 11. Sun, Z.P., Guo, Y.B., Shim, V.P.W., 2021. Characterisation and Modeling of Additively-Manufactured Polymeric Hybrid Lattice Structures for Energy Absorption. International Journal of Mechanical Sciences, 191.
  • 12. Wang, P., Yang, F., Li, P., Zheng, B., Fan, H. 2021. Design and Additive Manufacturing of a Modified Face-Centered Cubic Lattice with Enhanced Energy Absorption Capability. Extreme Mechanics Letters, 47, 101358.
  • 13. Tutar, M., 2023. A Comparative Evaluation of the Effects of Manufacturing Parameters on Mechanical Properties of Additively Manufactured PA and CF-Reinforced PA Materials. Polymers, 15, 38.
  • 14. Chen, L.Y., Liang, S.X., Liu, Y., Zhang, L.C., 2021. Additive Manufacturing of Metallic Lattice Structures: Unconstrained Design, Accurate Fabrication, Fascinated Performances, and Challenges. Materials Science and Engineering R: Reports, 146, 100648.
  • 15. Verma, S., Yang, C.K., Lin, C.H., Jeng, J.Y., 2022. Additive Manufacturing of Lattice Structures for High Strength Mechanical Interlocking of Metal and Resin During Injection Molding. Additive Manufacturing, 49, 102463.
  • 16. Zhang, J., Huang, H., Liu, G., Zong, H., Zhang, C., 2021. Stiffness and Energy Absorption of Additive Manufactured Hybrid Lattice Structures. Virtual and Physical Prototyping, 16(4), 428-443.
  • 17. Cho, S.G., Lee, J.S., 2021. FEM Analysis of 3D Lattice Structures of ABS Material, Turkish Journal of Computer and Mathematics Education, 12(6), 648-652.
  • 18. Dönmez, A., 2022. Production and Characterization of Simple, Face Centered and Diamond Cubic Lattices by Fused Deposition Modeling Using Polylactic Acid.Yüksek Lisans Tezi. Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Mühendislik Bilimleri Ana Bilim Dalı, 94.
  • 19. Aziz, A.R., Zhou, J., Thorne, D., Cantwell, W. J., 2021. Geometrical Scaling Effects in the Mechanical Properties of 3d-Printed Body-Centered Cubic (BCC) Lattice Structures. Polymers, 13(22), 3967.
  • 20. Bouteldja, A., Louar, M.A., Hemmouche, L., Gilson, L., Miranda-Vicario, A., Rabet, L., 2023. Experimental Investigation of the Quasi-Static and Dynamic Compressive Behavior of Polymer-Based 3D-Printed Lattice Structures. International Journal of Impact Engineering, 180, 104640.
  • 21. Garcia, R.F., Chua, A., 2022. High Compressive Strength 3D Printed Infill Based on Strut-Based Lattice Structure. ASEAN Engineering Journal, 12(4), 89-94.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Oğuz Tunçel 0000-0002-6886-6367

Mumin Tutar 0000-0002-7286-3433

Yayımlanma Tarihi 18 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Tunçel, O., & Tutar, M. (2023). EYM ile Üretilen YMK Yapılı Numunelerde Kenar Genişliğinin Basma Dayanımı Üzerine Etkisinin Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(3), 851-858. https://doi.org/10.21605/cukurovaumfd.1377804