Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Role of Abrasive Particle Velocity on the inner Pipe Surface Erosive Wear Resistance of Composite Pipes Reinforced with Basalt Fibre and Graphene Nanoplatelets

Yıl 2023, , 907 - 915, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410220

Öz

In this study, two different composite pipes manufactured with filament winding technique in [±55]4 winding configurations were investigated by considering the erosive behaviour of the inner surface of the pipe which may be subjected to erosive wear in substructure and material transfer applications where may be worn because of material flow. The solid particle erosion behaviour of basalt fibre reinforced composite pipe (BETKB) and basalt fibre reinforced composite pipes reinforced with 0.25 wt % graphene nanoplatelets (GNP/BETKB) were compared by considering the results obtained from the experiments. When evaluating the erosion rate resulting from impacting alumina abrasive particles on the inner surface of a pipe at various impact velocities (namely 23 m/s, 28 m/s, 34 m/s, and 53 m/s) and impingement angles (30, 45, 60), it was observed that graphene nanoplatelets reinforcement increased the resistance to erosive wear in basalt fibre-reinforced pipes. As indicated by the graphs, which also analyse the proportional change in erosion rate, the graphene nanoplatelets reinforcement achieved an erosion rate reduction of almost 50% at the impact velocity of 28 m/s. It was observed that the wear model of both pipes showed a behaviour suitable for the semi-ductile wear model.

Kaynakça

  • 1. Beycioğlu, A., Mis, H., Güner E.D., Güner H., Gökçe N., 2020. A Study on Industrial-Scale Waste Utilization in Construction Material Production: The Use of Fly Ash in GRP Composite Pipe. Materiales de Construcción, 70(340), e234.
  • 2. Adam, S., Ghosh, S., 2016. Application of Flexible Composite Pipe as a Cost Effective Alternative to Carbon Steel-Design Experience. In Offshore Technology Conference Asia, OTC.
  • 3. Laney, P., 2002. Use of Composite Pipe Materials in the Transportation of Natural Gas. INEEL Field Work Proposal, 4340-70.
  • 4. Silverman, S.A., 1997. Spoolable Composite Pipe for Offshore Applications. Materials Performance, 36(1).
  • 5. Prabhakar, M.M., Rajini, N., Ayrılmış, N., Mayandi, K., Siengchin, S., Senthilkumar, K., Karthikeyan, S., Ismail, S.O., 2019. An Overview of Burst, Buckling, Durability and Corrosion Analysis of Lightweight FRP Composite Pipes and Their Applicability. Composite Structures, 230, 111419.
  • 6. Alabtah, F.G., Mahdi, E., Khraisheh, M., 2021. External Corrosion Behavior of Steel/GFRP Composite Pipes in Harsh Conditions. Materials, 14(21), 6501.
  • 7. Picard, D., Hudson, W., Bouquier L., Dupupet G., Zivanovic, I., 2007. Composite Carbon Thermoplastic Tubes for Deepwater Applications. In Offshore Technology Conference,OTC.
  • 8. Czél, G., Czigány, T., 2008. A Study of Water Absorption and Mechanical Properties of Glass Fiber/Polyester Composite Pipes-Effects of Specimen Geometry and Preparation. Journal of Composite Materials, 42(26), 2815-2827.
  • 9. Chen, M., Weng, Y., Semple, K., Zhang, S., Jiang, X., Ma, J., Fei, B., Dai, C., 2021. Sustainability and Innovation of Bamboo Winding Composite Pipe Products. Renewable and Sustainable Energy Reviews, 144, 110976.
  • 10. Zubail, A.,Traidia, A., Masulli, M., Vatopoulos, K., Viellette, T., Taie, I., 2021. Carbon and Energy Footprint of Nonmetallic Composite Pipes in Onshore Oil and Gas Flowlines. Journal of Cleaner Production, 305, 127150.
  • 11. Okolie, O., Latto, J., Faisal N., Jamieson, H., Mukherji, A., Njuguna, J., 2023. Manufacturing Defects in Thermoplastic Composite Pipes and Their Effect on The in-Situ Performance of Thermoplastic Composite Pipes in Oil and Gas Applications. Applied Composite Materials, 30(1), 231-306.
  • 12. GangaRao, H., 2017. Infrastructure Applications of Fiber-Reinforced Polymer Composites. Applied Plastics Engineering Handbook, 675-695.
  • 13. Imrek, H., Demet, S., 2014. Experimental Investigation of Wear Behaviors of Bronze and Carbon-Reinforced Polytetrafluoroethylene Alloy Pivot Pin Bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(10), 1187-1194.
  • 14. Najafigharehtapeh, A., Kaçar, R., 2016. Elektrofüzyon Kaynaklı Polietilen 80 Kalite Doğalgaz Borularının Tokluğu. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS1), 109-116.
  • 15. Chen, C., Liu, X., Zhou, Q.Q., Ma, Y.L., 2022. Effect of Basalt Fiber on the Thermal Conductivity and Wear Resistance of Sintered WC-Based Diamond Composites. International Journal of Refractory Metals and Hard Materials, 105, 105829.
  • 16. Balaji, K., Shirvanimoghaddam, K., Rajan, G.S., Ellis, A.V., Naebe M., 2020. Surface Treatment of Basalt Fiber for Use in Automotive Composites. Materials Today Chemistry, 17, 100334.
  • 17. Demet, S.M., Sepetçioğlu H., Bağcı M., 2022. Filament Sarım Bazalt/Epoksi Kompozit Boruların İç Yüzey Erozif Aşınma Davranışına Partikül Hızı ve Çarpma Açısının Etkisi. Gazi University Journal of Sicene Partc C:Design and Technolgy, 10(4), 1046-1058.
  • 18. Oka, Y.I., Okamura, K., Yoshida, T., 2005. Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 1: Effects of Impact Parameters on a Predictive Equation. Wear, 259(1-6), 95-101.
  • 19. Peng, W., Cao,X., 2016. Numerical Simulation of Solid Particle Erosion in Pipe Bends for Liquid-Solid Flow. Powder Technology, 294, 266-279.
  • 20. Dong, M., Li, Q., Liu, H., Liu, C., Wujcik., E.K., Shao, Q., Ding, T., Mai, X., Shen, C., Guo, Z., 2018. Thermoplastic Polyurethane-Carbon Black Nanocomposite Coating: Fabrication and Solid Particle Erosion Resistance. Polymer, 158, 381-390.
  • 21. Demet, S.M., Sepetcioglu, H., Bagci, M., 2023. Solid Particle Erosion Behavior on the Outer Surface of Basalt/Epoxy Composite Pipes Produced by the Filament Winding Technique. Polymers, 15(2), 319.
  • 22. Alajmi, A.F., Ramulu, M., 2021. Solid Particle Erosion of Graphene-Based Coatings. Wear, 476, 203686.
  • 23. Sepetcioglu, H., Demet, S.M., Bagci, M., 2023. A Comprehensive Experimental Study of Enhanced Solid Particle Erosive Resistance on the Inner/Outer Surface of Graphene Nanoplatelets Modified Basalt/Epoxy Composite Pipe. Polymer Composites, 44, 6944-6956.
  • 24. Rana, A.R.K., Islam, M.A., Farhat, Z., 2020. Effect of Graphene Nanoplatelets (Gnps) Addition on Erosion–Corrosion Resistance of Electroless Ni–P Coatings. Journal of Bio-and Tribo-Corrosion, 6, 1-14.
  • 25. Harsha, A., Thakre, A.A., 2007. Investigation on Solid Particle Erosion Behaviour of Polyetherimide and Its Composites. Wear, 262(7-8), 807-818.
  • 26. Shahapurkar, K., Soudagar, M.E.M., Shahapurkar, P., Mathapati, M., Khan, T.M.Y., Mujtaba, M.A., Ali, M.D.I., Thanaiah, K., Siddiqui, I.H., Massod, A.A., 2022. Effect of Crump Rubber on the Solid Particle Erosion Response of Epoxy Composites. Journal of Applied Polymer Science, 139(2), 51470.
  • 27. Singha, K., 2012. A Short Review on Basalt Fiber. International Journal of Textile Science, 1(4), 19-28.
  • 28. Dhand, V., Mittal, G., Rhee, K.Y., Park, S.J., Hui, D., 2015. A Short Review on Basalt Fiber Reinforced Polymer Composites. Composites Part B: Engineering, 73, 166-180.
  • 29. Sepetcioglu, H., Tarakcioglu, N., 2021. Fatigue Behavior of Graphene Nanoplatelets Reinforced and Unreinforced Basalt/Epoxy Composite Pressure Vessels Subjected to Low-Velocity Impact Under Internal Pressure. Journal of Composite Materials, 55(29), 4361-4373.
  • 30. Rafiee, M., Hosseini Rad, S., Nitzsche, F., Laliberte, J., Labrosse, M., 2020. Significant Fatigue Life Enhancement in Multiscale Doubly-Modified Fiber/Epoxy Nanocomposites with Graphene Nanoplatelets and Reduced-Graphene Oxide. Polymers, 12(9), 2135.

Grafen Nanoplaka Katkılı Bazalt Elyaf Takviyeli Kompozit Boruların İç Yüzey Erozif Aşınma Direncinde Aşındırıcı Partikül Hızının Rolünün İncelenmesi

Yıl 2023, , 907 - 915, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410220

Öz

Bu çalışmada [±55]4 sarım konfigürasyonunda filament sarım tekniği ile imal edilen iki farklı kompozit borunun boru içi malzeme akşının olduğu alt yapı ve malzeme aktarım uygulamalarında erozif aşınmaya maruz kalabilecek boru iç yüzeyinin erozyon davranışı dikkate alınarak araştırılmıştır. Bazalt elyaf takviyeli kompozit boru (BETKB) ile ağırlıkça %0,25 grafen nanoplakalar ile güçlendirilmiş bazalt elyaf takviyeli kompozit boruların (GNP/BETKB) katı partikül erozyon davranışları yapılan deneylerden elde edilen sonuçlar dikkate alınarak karşılaştırılmıştır. Dört farklı çarpma hızında (23 m/s, 28 m/s, 34 m/s, 53 m/s) ve üç farklı çarpma açısında (30, 45, 60) alümina aşındırıcı partiküller boru iç yüzeyine çarptırılarak elde edilen erozyon oranı değerlendirildiğinde grafen nanoplaka takviyesinin bazalt elyaf takviyeli boruda erozyon aşınmasına karşı direnci artırdığı görülmüştür. Erozyon oranının oransal değişiminin de incelendiği grafiklerde de sunulduğu üzere 28 m/s çarpma hızında %50’ye yakın bir erozyon oranı azalımı grafen nanoplaka takviyesi sayesinde elde edilmiştir. Her iki borunun aşınma modelinin yarı sünek aşınma modeline uygun bir davranış sergilediği belirlenmiştir.

Kaynakça

  • 1. Beycioğlu, A., Mis, H., Güner E.D., Güner H., Gökçe N., 2020. A Study on Industrial-Scale Waste Utilization in Construction Material Production: The Use of Fly Ash in GRP Composite Pipe. Materiales de Construcción, 70(340), e234.
  • 2. Adam, S., Ghosh, S., 2016. Application of Flexible Composite Pipe as a Cost Effective Alternative to Carbon Steel-Design Experience. In Offshore Technology Conference Asia, OTC.
  • 3. Laney, P., 2002. Use of Composite Pipe Materials in the Transportation of Natural Gas. INEEL Field Work Proposal, 4340-70.
  • 4. Silverman, S.A., 1997. Spoolable Composite Pipe for Offshore Applications. Materials Performance, 36(1).
  • 5. Prabhakar, M.M., Rajini, N., Ayrılmış, N., Mayandi, K., Siengchin, S., Senthilkumar, K., Karthikeyan, S., Ismail, S.O., 2019. An Overview of Burst, Buckling, Durability and Corrosion Analysis of Lightweight FRP Composite Pipes and Their Applicability. Composite Structures, 230, 111419.
  • 6. Alabtah, F.G., Mahdi, E., Khraisheh, M., 2021. External Corrosion Behavior of Steel/GFRP Composite Pipes in Harsh Conditions. Materials, 14(21), 6501.
  • 7. Picard, D., Hudson, W., Bouquier L., Dupupet G., Zivanovic, I., 2007. Composite Carbon Thermoplastic Tubes for Deepwater Applications. In Offshore Technology Conference,OTC.
  • 8. Czél, G., Czigány, T., 2008. A Study of Water Absorption and Mechanical Properties of Glass Fiber/Polyester Composite Pipes-Effects of Specimen Geometry and Preparation. Journal of Composite Materials, 42(26), 2815-2827.
  • 9. Chen, M., Weng, Y., Semple, K., Zhang, S., Jiang, X., Ma, J., Fei, B., Dai, C., 2021. Sustainability and Innovation of Bamboo Winding Composite Pipe Products. Renewable and Sustainable Energy Reviews, 144, 110976.
  • 10. Zubail, A.,Traidia, A., Masulli, M., Vatopoulos, K., Viellette, T., Taie, I., 2021. Carbon and Energy Footprint of Nonmetallic Composite Pipes in Onshore Oil and Gas Flowlines. Journal of Cleaner Production, 305, 127150.
  • 11. Okolie, O., Latto, J., Faisal N., Jamieson, H., Mukherji, A., Njuguna, J., 2023. Manufacturing Defects in Thermoplastic Composite Pipes and Their Effect on The in-Situ Performance of Thermoplastic Composite Pipes in Oil and Gas Applications. Applied Composite Materials, 30(1), 231-306.
  • 12. GangaRao, H., 2017. Infrastructure Applications of Fiber-Reinforced Polymer Composites. Applied Plastics Engineering Handbook, 675-695.
  • 13. Imrek, H., Demet, S., 2014. Experimental Investigation of Wear Behaviors of Bronze and Carbon-Reinforced Polytetrafluoroethylene Alloy Pivot Pin Bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(10), 1187-1194.
  • 14. Najafigharehtapeh, A., Kaçar, R., 2016. Elektrofüzyon Kaynaklı Polietilen 80 Kalite Doğalgaz Borularının Tokluğu. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS1), 109-116.
  • 15. Chen, C., Liu, X., Zhou, Q.Q., Ma, Y.L., 2022. Effect of Basalt Fiber on the Thermal Conductivity and Wear Resistance of Sintered WC-Based Diamond Composites. International Journal of Refractory Metals and Hard Materials, 105, 105829.
  • 16. Balaji, K., Shirvanimoghaddam, K., Rajan, G.S., Ellis, A.V., Naebe M., 2020. Surface Treatment of Basalt Fiber for Use in Automotive Composites. Materials Today Chemistry, 17, 100334.
  • 17. Demet, S.M., Sepetçioğlu H., Bağcı M., 2022. Filament Sarım Bazalt/Epoksi Kompozit Boruların İç Yüzey Erozif Aşınma Davranışına Partikül Hızı ve Çarpma Açısının Etkisi. Gazi University Journal of Sicene Partc C:Design and Technolgy, 10(4), 1046-1058.
  • 18. Oka, Y.I., Okamura, K., Yoshida, T., 2005. Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 1: Effects of Impact Parameters on a Predictive Equation. Wear, 259(1-6), 95-101.
  • 19. Peng, W., Cao,X., 2016. Numerical Simulation of Solid Particle Erosion in Pipe Bends for Liquid-Solid Flow. Powder Technology, 294, 266-279.
  • 20. Dong, M., Li, Q., Liu, H., Liu, C., Wujcik., E.K., Shao, Q., Ding, T., Mai, X., Shen, C., Guo, Z., 2018. Thermoplastic Polyurethane-Carbon Black Nanocomposite Coating: Fabrication and Solid Particle Erosion Resistance. Polymer, 158, 381-390.
  • 21. Demet, S.M., Sepetcioglu, H., Bagci, M., 2023. Solid Particle Erosion Behavior on the Outer Surface of Basalt/Epoxy Composite Pipes Produced by the Filament Winding Technique. Polymers, 15(2), 319.
  • 22. Alajmi, A.F., Ramulu, M., 2021. Solid Particle Erosion of Graphene-Based Coatings. Wear, 476, 203686.
  • 23. Sepetcioglu, H., Demet, S.M., Bagci, M., 2023. A Comprehensive Experimental Study of Enhanced Solid Particle Erosive Resistance on the Inner/Outer Surface of Graphene Nanoplatelets Modified Basalt/Epoxy Composite Pipe. Polymer Composites, 44, 6944-6956.
  • 24. Rana, A.R.K., Islam, M.A., Farhat, Z., 2020. Effect of Graphene Nanoplatelets (Gnps) Addition on Erosion–Corrosion Resistance of Electroless Ni–P Coatings. Journal of Bio-and Tribo-Corrosion, 6, 1-14.
  • 25. Harsha, A., Thakre, A.A., 2007. Investigation on Solid Particle Erosion Behaviour of Polyetherimide and Its Composites. Wear, 262(7-8), 807-818.
  • 26. Shahapurkar, K., Soudagar, M.E.M., Shahapurkar, P., Mathapati, M., Khan, T.M.Y., Mujtaba, M.A., Ali, M.D.I., Thanaiah, K., Siddiqui, I.H., Massod, A.A., 2022. Effect of Crump Rubber on the Solid Particle Erosion Response of Epoxy Composites. Journal of Applied Polymer Science, 139(2), 51470.
  • 27. Singha, K., 2012. A Short Review on Basalt Fiber. International Journal of Textile Science, 1(4), 19-28.
  • 28. Dhand, V., Mittal, G., Rhee, K.Y., Park, S.J., Hui, D., 2015. A Short Review on Basalt Fiber Reinforced Polymer Composites. Composites Part B: Engineering, 73, 166-180.
  • 29. Sepetcioglu, H., Tarakcioglu, N., 2021. Fatigue Behavior of Graphene Nanoplatelets Reinforced and Unreinforced Basalt/Epoxy Composite Pressure Vessels Subjected to Low-Velocity Impact Under Internal Pressure. Journal of Composite Materials, 55(29), 4361-4373.
  • 30. Rafiee, M., Hosseini Rad, S., Nitzsche, F., Laliberte, J., Labrosse, M., 2020. Significant Fatigue Life Enhancement in Multiscale Doubly-Modified Fiber/Epoxy Nanocomposites with Graphene Nanoplatelets and Reduced-Graphene Oxide. Polymers, 12(9), 2135.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Seyit Mehmet Demet 0000-0002-9795-0939

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Demet, S. M. (2023). Grafen Nanoplaka Katkılı Bazalt Elyaf Takviyeli Kompozit Boruların İç Yüzey Erozif Aşınma Direncinde Aşındırıcı Partikül Hızının Rolünün İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 907-915. https://doi.org/10.21605/cukurovaumfd.1410220