Araştırma Makalesi
BibTex RIS Kaynak Göster

Helisel Kazıklarda Helis Çapının Basınç Yüküne Etkisinin Laboratuvar Deneyleri ile Araştırılması

Yıl 2023, , 1013 - 1022, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410350

Öz

Geleneksel kazıklara karşı alternatif bir temel olarak kullanımları giderek artan helisel kazıklar, zemine tork kuvveti ile döndürülerek yerleştirilen çelik temel sistemleridir. Bu çalışmada, gevşek ve sıkı kumlu zemine yerleştirilen dört farklı çaptaki helisel kazığın basınç yükü altındaki davranışı laboratuvar model deneyleri ile araştırılmıştır. Ayrıca her iki zemin sıkılığında düz (helissiz) kazık için deneyler yapılmıştır. Nihai yük değerleri, literatürdeki analitik yaklaşımlarla karşılaştırılmıştır. Helis çapı artışının kazık kapasitesini önemli oranda artırdığı görülmüştür. Özellikle sıkı zeminde, düz kazık çapının (şaft çapı) 5,5 katı büyüklüğünde helis plakası mevcudiyetinin, nihai yük kapasitesini yaklaşık 17 kata kadar artırdığı belirlenmiştir. Sıkı zemine yerleştirilmiş helisel kazığın kapasitesinde gevşek zemine kıyasla 10 kata varan artış elde edilmiştir. Analitik yaklaşımın, deneyden elde edilen nihai yük değerleriyle uyum içinde olduğu görülmüş ve ayrık taşıma yönteminin ise her iki zemin sıkılığında başarılı olduğu sonucuna ulaşılmıştır.

Kaynakça

  • 1. Perko, H.A., 2009. Helical Piles: A Practical Guide to Design and Installation. John Wiley & Sons, New Jersey, 528.
  • 2. Singh, S., Laddha, A., Hiranandani, P., Purohit, D.G.M. 2017. A Review on Pull-out Capacity of Helical Anchors in Clay and Sand. Journal of Architecture and Civil Engineering, 3(6), 24-32.
  • 3. Lutenegger, A.J., 2017. Uplift Behavior of Round Shaft Single-helix screw-piles for elevated Ground Mount Solar Panel Systems. 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, 615-618.
  • 4. Yılmaz, B., 2016. Helisel Kazıklar. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, Zemin Mekaniği ve Geoteknik Mühendisliği Programı, İstanbul, 137.
  • 5. Blessen, J., Deardorff, D., Dikeman, R., Kortan, J., Malone, J., Olson, K., Waltz, N., 2017. Supportworks Technical Manual. Third Edition, Nebraska, 338.
  • 6. Niroumand, H., Kassim, K.A., 2016. Design and Construction of Soil Anchor Plates. Butterworth-Heinemann, Oxford, 202.
  • 7. George, B.E., Banerjee, S., Gandhi, S.R., 2019. Helical Piles Installed in Cohesionless Soil by Displacement Method. International Journal of Geomechanics, 19(7), 04019074.
  • 8. Livneh, B., El Naggar, M.H., 2008. Axial Testing and Numerical Modeling of Square Shaft Helical Piles under Compressive and Tensile Loading. Canadian Geotechnical Journal, 45(8), 1142-1155.
  • 9. Mittal, S., Mukherjee, S., 2015. Behaviour of Group of Helical Screw Anchors under Compressive Loads. Geotechnical and Geological Engineering, 33(3), 575-592.
  • 10. George, B.E., Banerjee, S., Gandhi, S.R., 2020. Numerical Analysis of Helical Piles in Cohesionless Soil. International Journal of Geotechnical Engineering, 14(4), 361-375.
  • 11. Mooney, J.S., Adamczak, S., Clemence, S.P., 1985. Uplift Capacity of Helical Anchors in Clay and Silt. In: Uplift Behavior of Anchor Foundations in Soil, Proceedings of a Session Sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers in conjunction with the ASCE Convention, Michigan, 48-72.
  • 12. Mitsh, M.P., Clemence, S.P., 1985. The Uplift Capacity of Helix Anchors in Sand. In: Uplift Behavior of Anchor Foundations in Soil, Proceedings of a Session Sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers in conjunction with the ASCE Convention, Michigan, 26-47.
  • 13. Nasr, M.H., 2004. Large Capacity Screw Piles. International Conference: Future Vision and Challenges for Urban Development, Cairo, 1-15.
  • 14. Sakr, M., 2009. Performance of Helical Piles in Oil Sand. Canadian Geotechnical Journal, 46(9), 1046-1061.
  • 15. Sakr, M. 2011. Installation and Performance Characteristics of High-Capacity Helical Piles in Cohesionless Soils. DFI Journal - The Journal of the Deep Foundations Institute, 5(1), 39-57.
  • 16. Türedi, Y., 2021. Basınç Yüküne Maruz Helisel Kazık Davranışının Laboratuvar ve Arazi Deneyleri ile Araştırılması. Doktora Tezi, İskenderun Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, 170.
  • 17. Elsherbiny, Z.H., El Naggar, M.H., 2013. Axial Compressive Capacity of Helical Piles from Field Tests and Numerical Study. Canadian Geotechnical Journal, 50(12), 1191-1203.
  • 18. Davisson, M.T., 1972. High Capacity Piles. Lecture Series, Innovations in Foundation Construction, American Society of Civil Engineers, Illinois Section, Chicago, 81-112.
  • 19. Brinch Hansen, J., 1963. Discussion of “Hyperbolic Stress-Strain Response: Cohesive Soils”. Journal of Soil Mechanics and Foundations Division, 89(4), 241-242.
  • 20. O’Neill, M.W., Reese, L.C., 1999. Drilled Shafts: Construction Procedures and Design Methods. U.S. Department of Transportation, Federal Highway Administration, Office of Infrastructure, Publication No. FHWA-IF-99-025, 537.
  • 21. ISSMFE, 1985. Axial Pile Loading Test - Part I: Static Loading. Geotechnical Testing Journal, 8(2), 79-90.

Investigation of the Effect of Helix Diameter on Compression Load in Helical Piles by Laboratory Tests

Yıl 2023, , 1013 - 1022, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410350

Öz

Helical piles, which are increasingly being used as an alternative foundation to traditional piles, are steel foundation systems that are placed on the ground by rotated with torque force. In this study, the behavior of model helical piles with four different diameters placed in loose and dense sandy soils under compression load has been investigated by laboratory model tests. In addition, tests have been carried out for straight piles (without helix) at both soil densities. The ultimate load values have been compared with analytical approaches in the literature. It has been seen that the increase in helix diameter significantly increased the pile capacity. It has been determined that the presence of a helix plate with a size of 5.5 times the straight pile diameter (shaft diameter) increases the ultimate load capacity up to approximately 17 times, especially in dense soil. An increase of up to 10 times has been achieved in the capacity of helical piles placed in dense soil compared to loose soil. It has been seen that the analytical approach was compatible with the ultimate load values obtained from the test, and it has been concluded that the individual bearing method was successful in both soil densities.

Kaynakça

  • 1. Perko, H.A., 2009. Helical Piles: A Practical Guide to Design and Installation. John Wiley & Sons, New Jersey, 528.
  • 2. Singh, S., Laddha, A., Hiranandani, P., Purohit, D.G.M. 2017. A Review on Pull-out Capacity of Helical Anchors in Clay and Sand. Journal of Architecture and Civil Engineering, 3(6), 24-32.
  • 3. Lutenegger, A.J., 2017. Uplift Behavior of Round Shaft Single-helix screw-piles for elevated Ground Mount Solar Panel Systems. 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, 615-618.
  • 4. Yılmaz, B., 2016. Helisel Kazıklar. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, Zemin Mekaniği ve Geoteknik Mühendisliği Programı, İstanbul, 137.
  • 5. Blessen, J., Deardorff, D., Dikeman, R., Kortan, J., Malone, J., Olson, K., Waltz, N., 2017. Supportworks Technical Manual. Third Edition, Nebraska, 338.
  • 6. Niroumand, H., Kassim, K.A., 2016. Design and Construction of Soil Anchor Plates. Butterworth-Heinemann, Oxford, 202.
  • 7. George, B.E., Banerjee, S., Gandhi, S.R., 2019. Helical Piles Installed in Cohesionless Soil by Displacement Method. International Journal of Geomechanics, 19(7), 04019074.
  • 8. Livneh, B., El Naggar, M.H., 2008. Axial Testing and Numerical Modeling of Square Shaft Helical Piles under Compressive and Tensile Loading. Canadian Geotechnical Journal, 45(8), 1142-1155.
  • 9. Mittal, S., Mukherjee, S., 2015. Behaviour of Group of Helical Screw Anchors under Compressive Loads. Geotechnical and Geological Engineering, 33(3), 575-592.
  • 10. George, B.E., Banerjee, S., Gandhi, S.R., 2020. Numerical Analysis of Helical Piles in Cohesionless Soil. International Journal of Geotechnical Engineering, 14(4), 361-375.
  • 11. Mooney, J.S., Adamczak, S., Clemence, S.P., 1985. Uplift Capacity of Helical Anchors in Clay and Silt. In: Uplift Behavior of Anchor Foundations in Soil, Proceedings of a Session Sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers in conjunction with the ASCE Convention, Michigan, 48-72.
  • 12. Mitsh, M.P., Clemence, S.P., 1985. The Uplift Capacity of Helix Anchors in Sand. In: Uplift Behavior of Anchor Foundations in Soil, Proceedings of a Session Sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers in conjunction with the ASCE Convention, Michigan, 26-47.
  • 13. Nasr, M.H., 2004. Large Capacity Screw Piles. International Conference: Future Vision and Challenges for Urban Development, Cairo, 1-15.
  • 14. Sakr, M., 2009. Performance of Helical Piles in Oil Sand. Canadian Geotechnical Journal, 46(9), 1046-1061.
  • 15. Sakr, M. 2011. Installation and Performance Characteristics of High-Capacity Helical Piles in Cohesionless Soils. DFI Journal - The Journal of the Deep Foundations Institute, 5(1), 39-57.
  • 16. Türedi, Y., 2021. Basınç Yüküne Maruz Helisel Kazık Davranışının Laboratuvar ve Arazi Deneyleri ile Araştırılması. Doktora Tezi, İskenderun Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, 170.
  • 17. Elsherbiny, Z.H., El Naggar, M.H., 2013. Axial Compressive Capacity of Helical Piles from Field Tests and Numerical Study. Canadian Geotechnical Journal, 50(12), 1191-1203.
  • 18. Davisson, M.T., 1972. High Capacity Piles. Lecture Series, Innovations in Foundation Construction, American Society of Civil Engineers, Illinois Section, Chicago, 81-112.
  • 19. Brinch Hansen, J., 1963. Discussion of “Hyperbolic Stress-Strain Response: Cohesive Soils”. Journal of Soil Mechanics and Foundations Division, 89(4), 241-242.
  • 20. O’Neill, M.W., Reese, L.C., 1999. Drilled Shafts: Construction Procedures and Design Methods. U.S. Department of Transportation, Federal Highway Administration, Office of Infrastructure, Publication No. FHWA-IF-99-025, 537.
  • 21. ISSMFE, 1985. Axial Pile Loading Test - Part I: Static Loading. Geotechnical Testing Journal, 8(2), 79-90.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Geoteknik Mühendisliği, İnşaat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Yakup Türedi 0000-0001-9197-5214

Buse Emirler 0000-0002-0234-7177

Murat Örnek 0000-0002-0809-2531

Abdulazim Yıldız 0000-0002-6755-1902

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Türedi, Y., Emirler, B., Örnek, M., Yıldız, A. (2023). Helisel Kazıklarda Helis Çapının Basınç Yüküne Etkisinin Laboratuvar Deneyleri ile Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1013-1022. https://doi.org/10.21605/cukurovaumfd.1410350