Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of One-Way Fluid-Structure Interactions for a Straight Pipe under Different Thermal and Pressure Conditions

Yıl 2023, , 1049 - 1060, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410647

Öz

Numerical studies on stress, deformation, and damages due to fluid flow have been highly carried out using Fluid-Structure Interaction (FSI) in recent years. FSI is highly efficient in investigating a solid domain deformed by the fluid flow. In this study, a one-way fluid-structure interaction study is performed by a straight pipe under different pressure and thermal conditions. Here, the thermophysical properties of the fluid and mechanical properties of the solid domain can be subjected to change during fluid flow. An aluminum straight pipe with a 1 mm wall thickness is operated under 1 Bar, 5 Bar, and 10 Bar with three different surface temperatures -10ºC, 20ºC, and 50ºC. This study aims to investigate the structural variation of aluminum by the temperature and pressure change of operating fluid in the pipe. Variation of thermophysical properties of fluid by heated pipe surface is integrated into the numerical analysis by generated functions. Numerical analysis showed that the variation of temperature in operating fluid highly affects the fluid characteristic and the structural response of the solid domain by different temperatures. An increase in the operating pressure caused maximum deformation to approximately %100 from 1 Bar to 5 Bar, and approximately %120 from 1 Bar to 10 Bar for the adiabatic process as expected but in the heating conditions stress is nearly three times higher than cooling conditions. As a result, one-way FSI solutions are highly effective in investigating the deformed solid domain as a result of flow, thermal, and operating conditions.

Kaynakça

  • 1. Li, S., Karney, B.W., Liu, G., 2015. FSI Research in Pipeline Systems - A Review of the Literature. J. Fluids Struct., 57, 277-297.
  • 2. Mohmmed, A.O., Al-Kayiem, H.H., A.B., O., Sabir, O., 2020. One-Way Coupled Fluid–Structure Interaction of Gas-Liquid Slug Flow in a Horizontal Pipe: Experiments and Simulations. J. Fluids Struct., 97, 103083.
  • 3. Tijsseling, A.S., 1996. Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review. J. Fluids Struct., 10, 109-146.
  • 4. Darıcık, F., Canbolat, G., Koru, M., 2022. Investigation of a Fiber Reinforced Polymer Composite Tube by Two Way Coupling Fluid-Structure Interaction. Coupled Syst. Mech., 11,315-333.
  • 5. Etli, M., Canbolat, G., Karahan, O., Koru, M., 2021. Numerical Investigation of Patient-Specific Thoracic Aortic Aneurysms and Comparison with Normal Subject via Computational Fluid Dynamics (CFD). Med. Biol. Eng. Comput., 59, 71-84.
  • 6. Benra, F.-K., Dohmen, H.J., Pei, J., Schuster, S., Wan, B., 2011. A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions. J. Appl. Math. 2011, 1-16.
  • 7. Ahamed, M., Atique, S., Munshi, M., Koiranen, T., 2017. A Concise Description of One Way and Two Way Coupling Methods for Fluid-Structure Interaction Problems. Am. J. Eng. Res., 86-89 .
  • 8. Tijsseling, A.S., 2007. Water Hammer with Fluid–Structure Interaction in Thick-Walled Pipes. Comput. Struct., 85, 844-851.
  • 9. Ferras, D., Manso, P.A., Schleiss, A.J., Covas, D.I.C., 2017. Fluid-Structure Interaction in Straight Pipelines with Different Anchoring Conditions. J. Sound Vib., 394, 348-365.
  • 10. Sreejith, B., Jayaraj, K., Ganesan, N., Padmanabhan, C., Chellapandi, P., Selvaraj, P., 2004. Finite Element Analysis of Fluid–Structure Interaction in Pipeline Systems. Nucl. Eng. Des., 227, 313-322.
  • 11. Zhu, H., Zhang, W., Feng, G., Qi, X., 2014. Fluid-Structure Interaction Computational Analysis of Flow Field, Shear Stress Distribution and Deformation of Three-Limb Pipe. Eng. Fail. Anal., 42, 252-262.
  • 12. Elfaki, M., Nasif, M.S., Muhammad, M., 2021. Effect of Changing Crude Oil Grade on Slug Characteristics and Flow Induced Mechanical Stresses in Pipes. Appl. Sci., 11.
  • 13. Zhu, H., Zhao, H., Pan, Q., Li, X., 2014. Coupling Analysis of Fluid-Structure Interaction and Flow Erosion of Gas-Solid Flow in Elbow Pipe. Adv. Mech. Eng., 6, 815945.
  • 14. Guo, Q., Zhou, J.X., Guan, X.L., 2020. Fluid-Structure Interaction in Z-Shaped Pipe with Different Supports. Acta Mech. Sin., 36, 513-523.
  • 15. Yunus A,J., Cimbala., M., 2006. Fluid Mechanics Fundamentals and Applications. HillHigher Education, Boston, 1031.
  • 16. Canbolat, G., Yıldızeli, A., Köse, H.A., Çadırcı, S., 2020. Düz Bir Plaka Üzerindeki Hidrodinamik ve Isıl Sınır Tabaka Akışının Sayısal Olarak İncelenmesi ve Geçiş Kontrolü. Int. J. Adv. Eng. Pure Sci., 32, 390-397.
  • 17. Rzehak, R., Kriebitzsch, S., 2015. Multiphase CFD-Simulation of Bubbly Pipe Flow: A Code Comparison. Int. J. Multiph. Flow., 68, 135-152.
  • 18. Elkarii, M., Boukharfane, R., Benjelloun, S., Bouallou, C., 2023. A CFD-Based Surrogate Model For Predicting Slurry Pipe Flow Pressure Drops. Part. Sci. Technol., 41, 432-442.
  • 19. Canbolat, G., Etli, M., Karahan, O., Koru, M., Korkmaz, E., 2023. Investigation of Vascular Flow in a Thoracic Aorta in Terms of Flow Models and Blood Rheology via Computational Fluid Dynamics (CFD), J. Mech. Med. Biol., 2350094.
  • 20. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K., 1981. Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows. Comput. Methods Appl. Mech. Eng., 29, 329-349.
  • 21. ANSYS, 2013. Ansys Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, 15317.
  • 22. Ezkurra, M., Ander Esnaola, J., Martinez Agirre, M., 2018. Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour During Closing Manoeuvring Operation of a Butterfly Valve Structural Integrity of Offshore Renewable Rnergy Platforms View Project., 12, 409-415.
  • 23. Gorman, D.G., Reese, J.M., Zhang, Y.L., 2000. Vibration of a Flexible Pipe Conveying Viscous Pulsating Fluid Flow. J. Sound Vib., 230, 379-392.
  • 24. Heinsbroek, A.G.T.J., 1997. Fluid-Structure Interaction in Non-Rigid Pipeline Systems. Nucl. Eng. Des., 172, 123-135.
  • 25. Bureček, A., Hružík, L., Vašina, M., 2015. Simulation of Accumulator Influence on Hydraulic Shock in Long Pipe. Manuf. Ind. Eng.,14, 1-4.
  • 26. Hružík, L., Bureček, A., Vašina, M., 2014. Non-Stationary Flow of Hydraulic Oil in Long Pipe. EPJ Web Conf., 67, 1-5.

Farklı Isı ve Basınç Koşulları Altında Düz Bir Boru İçin Tek Yönlü Akışkan-Yapı Etkileşimleri Analizi

Yıl 2023, , 1049 - 1060, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410647

Öz

Son yıllarda, tek yönlü Akışkan Yapı Etkileşimleri (AYE) ile akış karakteristiklerinin yol açtığı gerilim, deformasyon ve hasarlar üzerine birçok nümerik çalışmalar yapılmıştır. AYE, akış koşulları ile deforme olan bir katı cismi araştırmak için oldukça verilmlidir. Bu çalışmada, farklı basınç ve termal koşullar altında düz bir boru içindeki akışta tek yönlü akışkan yapı etkileşimi analizleri gerçekleştirilmiştir. Burada akışkanın termofiziksel özellikleri ve katı bölgenin mekanik özellikleri akış sırasında değişime uğrayabilmektedir. 1 mm et kalınlığına sahip alüminyum düz bir boru 1 Bar, 5 Bar ve 10 Bar’lık basınçlar altında ve ayrıca yüzey sıcaklığı -10ºC, 20ºC ve 50ºC olmak üzere farklı operasyon koşullarında analiz edilmiştir. Bu çalışmada boru içerisindeki akışkanın sıcaklık ve basınç değişimi ile alüminyumun yapısal değişiminin araştırılması amaçlanmıştır. Isıtılan boru yüzeyi ile akışkanın termofiziksel özelliklerinin değişimi, oluşturulan fonksiyonlarla sayısal analize entegre edilmiştir. Sayısal analiz, akışkandaki sıcaklık değişiminin, akışkan karakteristiğini ve katı bölgenin yapısal tepkisini farklı sıcaklıklar da oldukça etkilediğini göstermiştir. Çalışma basıncındaki artış ile deformasyondaki maksimum artış beklenildiği gibi adyabatik duruma göre 1 Bar'dan 5 Bar'a yaklaşık %100, 1 Bar'dan 10 Bar’a ise yaklaşık %120’ye ulaşmıştır. Ancak ısıtma koşullarında oluşan gerilimin, soğutma koşullarına göre yaklaşık üç kat daha fazla saptanmıştır. Sonuç olarak tek yönlü FSI çözümlerinin akış, ısı ve çalışma koşulları altında deforme olan katı bölgenin incelenmesinde oldukça etkili olduğunu gösterilmiştir.

Kaynakça

  • 1. Li, S., Karney, B.W., Liu, G., 2015. FSI Research in Pipeline Systems - A Review of the Literature. J. Fluids Struct., 57, 277-297.
  • 2. Mohmmed, A.O., Al-Kayiem, H.H., A.B., O., Sabir, O., 2020. One-Way Coupled Fluid–Structure Interaction of Gas-Liquid Slug Flow in a Horizontal Pipe: Experiments and Simulations. J. Fluids Struct., 97, 103083.
  • 3. Tijsseling, A.S., 1996. Fluid-Structure Interaction in Liquid-Filled Pipe Systems: A Review. J. Fluids Struct., 10, 109-146.
  • 4. Darıcık, F., Canbolat, G., Koru, M., 2022. Investigation of a Fiber Reinforced Polymer Composite Tube by Two Way Coupling Fluid-Structure Interaction. Coupled Syst. Mech., 11,315-333.
  • 5. Etli, M., Canbolat, G., Karahan, O., Koru, M., 2021. Numerical Investigation of Patient-Specific Thoracic Aortic Aneurysms and Comparison with Normal Subject via Computational Fluid Dynamics (CFD). Med. Biol. Eng. Comput., 59, 71-84.
  • 6. Benra, F.-K., Dohmen, H.J., Pei, J., Schuster, S., Wan, B., 2011. A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions. J. Appl. Math. 2011, 1-16.
  • 7. Ahamed, M., Atique, S., Munshi, M., Koiranen, T., 2017. A Concise Description of One Way and Two Way Coupling Methods for Fluid-Structure Interaction Problems. Am. J. Eng. Res., 86-89 .
  • 8. Tijsseling, A.S., 2007. Water Hammer with Fluid–Structure Interaction in Thick-Walled Pipes. Comput. Struct., 85, 844-851.
  • 9. Ferras, D., Manso, P.A., Schleiss, A.J., Covas, D.I.C., 2017. Fluid-Structure Interaction in Straight Pipelines with Different Anchoring Conditions. J. Sound Vib., 394, 348-365.
  • 10. Sreejith, B., Jayaraj, K., Ganesan, N., Padmanabhan, C., Chellapandi, P., Selvaraj, P., 2004. Finite Element Analysis of Fluid–Structure Interaction in Pipeline Systems. Nucl. Eng. Des., 227, 313-322.
  • 11. Zhu, H., Zhang, W., Feng, G., Qi, X., 2014. Fluid-Structure Interaction Computational Analysis of Flow Field, Shear Stress Distribution and Deformation of Three-Limb Pipe. Eng. Fail. Anal., 42, 252-262.
  • 12. Elfaki, M., Nasif, M.S., Muhammad, M., 2021. Effect of Changing Crude Oil Grade on Slug Characteristics and Flow Induced Mechanical Stresses in Pipes. Appl. Sci., 11.
  • 13. Zhu, H., Zhao, H., Pan, Q., Li, X., 2014. Coupling Analysis of Fluid-Structure Interaction and Flow Erosion of Gas-Solid Flow in Elbow Pipe. Adv. Mech. Eng., 6, 815945.
  • 14. Guo, Q., Zhou, J.X., Guan, X.L., 2020. Fluid-Structure Interaction in Z-Shaped Pipe with Different Supports. Acta Mech. Sin., 36, 513-523.
  • 15. Yunus A,J., Cimbala., M., 2006. Fluid Mechanics Fundamentals and Applications. HillHigher Education, Boston, 1031.
  • 16. Canbolat, G., Yıldızeli, A., Köse, H.A., Çadırcı, S., 2020. Düz Bir Plaka Üzerindeki Hidrodinamik ve Isıl Sınır Tabaka Akışının Sayısal Olarak İncelenmesi ve Geçiş Kontrolü. Int. J. Adv. Eng. Pure Sci., 32, 390-397.
  • 17. Rzehak, R., Kriebitzsch, S., 2015. Multiphase CFD-Simulation of Bubbly Pipe Flow: A Code Comparison. Int. J. Multiph. Flow., 68, 135-152.
  • 18. Elkarii, M., Boukharfane, R., Benjelloun, S., Bouallou, C., 2023. A CFD-Based Surrogate Model For Predicting Slurry Pipe Flow Pressure Drops. Part. Sci. Technol., 41, 432-442.
  • 19. Canbolat, G., Etli, M., Karahan, O., Koru, M., Korkmaz, E., 2023. Investigation of Vascular Flow in a Thoracic Aorta in Terms of Flow Models and Blood Rheology via Computational Fluid Dynamics (CFD), J. Mech. Med. Biol., 2350094.
  • 20. Hughes, T.J.R., Liu, W.K., Zimmermann, T.K., 1981. Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows. Comput. Methods Appl. Mech. Eng., 29, 329-349.
  • 21. ANSYS, 2013. Ansys Fluent Theory Guide, ANSYS, Inc., 275 Technology Drive Canonsburg, 15317.
  • 22. Ezkurra, M., Ander Esnaola, J., Martinez Agirre, M., 2018. Analysis of One-Way and Two-Way FSI Approaches to Characterise the Flow Regime and the Mechanical Behaviour During Closing Manoeuvring Operation of a Butterfly Valve Structural Integrity of Offshore Renewable Rnergy Platforms View Project., 12, 409-415.
  • 23. Gorman, D.G., Reese, J.M., Zhang, Y.L., 2000. Vibration of a Flexible Pipe Conveying Viscous Pulsating Fluid Flow. J. Sound Vib., 230, 379-392.
  • 24. Heinsbroek, A.G.T.J., 1997. Fluid-Structure Interaction in Non-Rigid Pipeline Systems. Nucl. Eng. Des., 172, 123-135.
  • 25. Bureček, A., Hružík, L., Vašina, M., 2015. Simulation of Accumulator Influence on Hydraulic Shock in Long Pipe. Manuf. Ind. Eng.,14, 1-4.
  • 26. Hružík, L., Bureček, A., Vašina, M., 2014. Non-Stationary Flow of Hydraulic Oil in Long Pipe. EPJ Web Conf., 67, 1-5.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel ve Teorik Akışkanlar Dinamiği, Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Gökhan Canbolat 0000-0001-6491-095X

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Canbolat, G. (2023). Analysis of One-Way Fluid-Structure Interactions for a Straight Pipe under Different Thermal and Pressure Conditions. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1049-1060. https://doi.org/10.21605/cukurovaumfd.1410647