Araştırma Makalesi
BibTex RIS Kaynak Göster

Thyristor Controlled Series Capacitor (TCSC) Based Wide-area Damping System Design for Inter-area Oscillations in Power Systems

Yıl 2023, , 1061 - 1076, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410695

Öz

Electromechanical low-frequency oscillations are among the primary concerns for the stability of large-scale interconnected power systems. Depending on the system components they affect, these low-frequency oscillations can be classified as local oscillations, inter-area oscillations, control mode oscillations, or torsional mode oscillations. Inter-area oscillation occurs when generator groups in two areas connected by weak tie lines involving large amount of power transfer experience oscillations relative to each other. While Power System Stabilizers (PSS) are an effective solution for damping local modes by adding an additional damping signal to the excitation system of generators, they are insufficient in dampening inter-area modes. This is due to the lower observability of inter-area modes in local signals.

Thyristor Controlled Series Compensators (TCSC) devices, which are used in power systems for purposes such as power transfer control and transient stability, also contribute to the damping of inter-area modes when direct access to signals with high observability (global signals) of inter-area modes are provided. Effective results in damping inter-area oscillation modes are achieved through the coordinated use of global signal based Power System Stabilizers (PSS) and TCSC devices. In this study, a wide-area damping control system based on TCSC was designed for a 2-area 4-generator power system, which is used as a benchmark model in inter-area oscillation studies. The damping performance was initially evaluated with only TCSC active in the system. Subsequently, a global signal-based PSS was added to the system via TCSC, and the performance evaluation was conducted again. Simulation results demonstrate that the coordinated use of global PSS and TCSC successfully dampens inter-area oscillation modes and improves inter-area power transfer.

Kaynakça

  • 1. IEEE Special Publication, 1995. Inter-area Oscillations in Power Systems (95-TP-101-1995).
  • 2. Klein, M., Rogers, G.J., Kundur, P., 1991. A Fundamental Study of Inter-area Oscillations in Power Systems. IEEE Transactions on Power Systems, 6(3), 914-921.
  • 3. Heniche, A., Kamwa, I., 2002. Control Loops Selection to Damp Inter-area Oscillations of Electrical Networks. 2002 IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 240.
  • 4. Aboul-Ela, A.S., McCalley, J., Fouad, A., 1996. Damping Controller Design for Power System Oscillations Using Global Signals. IEEE Transactions on Power Systems, 11(2), 767-773.
  • 5. Kamwa, I., Grondin, R., Hebert, Y., 2001. Wide-Area Measurement Based Stabilizing Control of Large Power Systems - A Decentralized/ Hierarchical Approach. IEEE Transactions on Power System, 16(1), 136-153.
  • 6. Dobreseu, M., Grondin, R., Heniche, A., Kamwa, I., Lefebvre, D., Trudel, G., 2005. Assesing the Technical Value of FACTS-based Wide Area Damping Control Loops. 2005 IEEE PES General Meeting, 1636-1645.
  • 7. Kundur, P., 1994. Power System Stability and Control. McGraw-Hill, New York, 1176.
  • 8. Paserba, J., 1996. Analysis and Control of Power System Oscillation. CIGRE Special Publication (38.01.07).
  • 9. Chow, J.H., Larsen, E.V., Sanchez-Gasca, J. J., 1995. Concepts for Design of FACTS Controllers to Damp Power Swings, IEEE Transactions on Power Systems. 10, 948-955.
  • 10. Chow, J., Ren, H., Sanchez-Gasca, J.J., Wang, S., 2000. Power System Damping Controller Design Using Multiple Input Signals. IEEE Control Systems Magazine, 20(4), 82-90.
  • 11. Taranto, G.N., Chow, J.H., 1995. A Robust Frequency Domain Optimization Technique for Tuning Series Compensation Damping Controllers. IEEE Transactions on Power Systems, 10(3), 1219-1225.
  • 12. Paserba, J.J., Miller, N.W., Larsen, E.V., Piwko, R.J., 1995. A Thyristor Controlled Series Compensation Model for Power System Stability Analysis. IEEE Transactions on Power Delivery, 10(3), 1471-1478.
  • 13. Lei, X., Jiang, D., Retzmann, D., 2007. Stability Improvement in Power Systems with Non‐linear TCSC Control Strategies. European Transactions on Electrical Power, 10, 339- 345.
  • 14. Chaudhuri, B., Pal, B.C., 2004. Robust Damping of Multiple Swing Modes Employing Global Stabilizing Signals with a TCSC. IEEE Transactions on Power Systems, 19(1), 499-506.
  • 15. Wivutbudsiri, S., Hongesombut, K., Rungrangpitayagon, J., 2014. Wide-area Power System Control Using Thyristor Controlled Series Capacitor Based Fuzzy Logic Controller Designed by Observed Signals. 2014 International Electrical Engineering Congress (iEECON), Chonburi, 1-4.
  • 16. Prakash, A., Moursi, M.S.E., Parida S.K., El-Saadany, E.F., 2023. Design of Wide Area Damping Controller Based on Clustering of Inter-Area Oscillations. 2023 IEEE PES Conference on Innovative Smart Grid Technologies-Middle East (ISGT Middle East), Abu Dhabi.
  • 17. Kumar, K., Prakash, A., Parida, S.K., 2023. Wide-Area Damping Controller Design with TCSC Using Active Disturbance Rejection Control. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), London, 1-5.
  • 18. Prakash, A., Singh, P., Kumar K., Parida, S.K., 2021. Design of TCSC Based Optimal Wide Area Power System Stabilizer for Low-Frequency Oscillation. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, 1-6.
  • 19. Prakash, A., Moursi, M.S.E., Parida, S.K., Kumar K., El-Saadany, E.F., 2023. Damping of Inter-Area Oscillations With Frequency Regulation in Power Systems Considering High Penetration of Renewable Energy Sources. IEEE Transactions on Industry (Erken Görünüm)
  • 20. Haugdal, H., Uhlen K., Jóhannsson, H., 2023. A Novel Phasor Power Oscillation Damper With Adaptive Phase Compensation, Achieved Using Multiple Model Adaptive Estimation. IEEE Transactions on Power Systems, 38(4), 3179-3188.
  • 21. Prakash, A., Kumar, K., Parida, S.K., 2023. A Modal Transformation Approach to Design Reduced Order Functional Observer-Based WADC for Low-Frequency Oscillations. IEEE Transactions on Power Systems, 38(4), 3593-3604.
  • 22. Yang, N., Liu Q., McCalley, J.D., 1998. TCSC Controller Design for Damping Interarea Oscillations. IEEE Transactions on Power Systems, 13(4), 1304-1310.
  • 23. Cai. L.J., Erlich, I., 2005. Simultaneous Coordinated Tuning of PSS and FACTS Damping Controllers in Large Power Systems. IEEE Transactions on Power Systems, 20, 294-300.
  • 24. Davalos, R.J., Ramirez, J.M., Valenzuela, V., 2000. Coordination of FACTS-based Stabilizers for Damping Oscillations. IEEE Power Engineering Review, 20, 46-49.
  • 25. Dotta, D., Decker, I.C., Silva, A.S., 2008. Wide-area Measurements-based Two-level Control Design Considering Signal Transmission Delay. IEEE Trans. Power Syst., 24(1), 208-216.
  • 26. Chaudhuri, B., Majumder, R., Pal, B.C. 2007. Implementation and Test Results of a Wide-area Measurement-based Controller for Damping Interarea Oscillations Considering Signal-transmission Delay. IET Gener Trans Distr, 1(1), 1-7.
  • 27. Chaudhuri, B., Majumder, R., Pal, B. 2004. Wide-Area Measurement-based Stabilizing Control of Power System Considering Signal Transmission Delay. IEEE Transactions on Power Systems, 19(4), 1971-1979.
  • 28. Beiraghi, M., Ranjbar, A., 2016. Adaptive Delay Compensator for the Robust Wide-area Damping Controller Design. IEEE Transactions on Power Systems 31(6), 4966-4976.
  • 29. Zhang, S., Vittal, V., 2014. Design of Wide-Area Damping Control Robust to Transmission Delay Using µ -synthesis Approach. 2014 IEEE PES General Meeting Conference & Exposition, IEEE, 1-5.
  • 30. Chow, J.H., Ghiocel, S.G., 2012. An Adaptive Wide-Area Power System Controller using Synchrophasor Data, Book Chapter in Control and Optimization Methods for Electric Smart Grids. Springer, Power Electronics and Power Systems, 3(3), 327-342, 371.
  • 31. Başel, M.B., Mete, A.N., 2022. An Adaptive Network Latency Compensator Design for Wide Area Damping Control of Power System Oscillations. Electrical Engineering, 36(2), 2793-2803.
  • 32. Sanchez-Gasca, J.J. (Ed)., 2012. Identification of Electromechanical Modes in Power Systems”, IEEE Task Force Report, Special Publication (TP462).
  • 33. Pagola, F.L., Perez-Arriaga, I.J., Verghese, G.C., 1989. On Sensivitivities, Residues and Participations: Applications to Oscillatory Stability Analysis and Control. IEEE Transactions on Power Systems, 4, 278-285.
  • 34. Hamdan, A.M.A., Elabdalla A.M., 1988. Geometric Measures of Modal Controllability and Observability of Power System Models. Electric Power System Research, 15, 147-155.
  • 35. Heniche, A., Kamwa, I., 2008. Assessment of Two Methods to Select Wide-Area Signals for Power System Damping Control. IEEE Transactions on Power Systems, 23(2), 572-581.
  • 36. Başel, M.B., 2019. Alanlar Arası Salınım Sönümlenmesi için TCSC ve PSS Tabanlı İki Farklı Geniş Alan Kontrol Sistemi Tasarımı, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Elk-Elektronik Mühendisliği Anabilim Dalı, Mersin, 73.
  • 37. Jovcic, D., Pillai, G.N., 2005. Analytical Modeling of TCSC Dynamics. IEEE Transactions on Power Delivery, 20(2), 1097-1104.

Güç Sistemlerinde Alanlar-Arası Salınımlar için bir Tristör Kontrollü Seri Kapasitör (TCSC) Tabanlı Geniş-Alan Sönümleme Sistemi Tasarımı

Yıl 2023, , 1061 - 1076, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410695

Öz

Elektromekanik düşük frekanslı salınımlar, büyük çaplı enterkonnekte güç sistemlerinin kararlılığı için başlıca kaygılar arasındadır. Etki ettikleri sistem bileşenlerine bağlı olarak bu düşük frekanslı salınımlar, lokal salınımlar, alanlar arası salınımlar, kontrol modu salınımları veya burulma modu salınımları olarak sınıflandırılabilirler. Alanlar arası salınım, birbirlerine zayıf bağlantı hatları ile bağlı yüksek miktarda güç transferinin yapıldığı iki alanda bulunan generatör gruplarının birbirlerine karşı salınımları ile meydana gelmektedir. Generatörlerin uyarım sistemine ek bir sönümleme sinyali eklenmesi için kurulan güç sistemi kararlaştırıcıları (PSS) lokal modların sönümlendirilmesinde oldukça etkili bir çözüm iken alanlar arası modların sönümlendirilmesinde yetersiz kalmaktadırlar. Bunun nedeni alanlar arası modların gözlemlenebilirliğinin lokal sinyallerde düşük olmasıdır.

Güç sistemlerinde güç aktarım kontrolü ve geçici durum kararlılığı sağlama gibi amaçlarla kullanılan Tristör Kontrollü Seri Kompanzatör (TCSC) cihazlar, alanlar arası modların gözlemlenebilirliğinin yüksek olduğu sinyallere (global sinyaller) doğrudan erişimi sağlandığında bu modların sönümlendirilmesine de katkı vermektedirler. Global sinyal tabanlı PSS ve TCSC cihazların koordineli kullanımıyla alanlar arası salınım modlarının sönümlendirilmesinde etkili sonuçlar alınmaktadır. Bu çalışmada alanlar arası salınım çalışmalarında referans model olarak kullanılan 2 alanlı 4 generatörlü güç sistemi için TCSC tabanlı bir geniş alan sönümleme kontrol sistemi tasarlanmıştır. Sönümleme performansı öncelikle sistemde sadece TCSC aktif iken değerlendirilmiştir. Sonrasında global sinyal tabanlı bir PSS, TCSC üzerinden sisteme eklenmiş ve performans değerlendirmesi yeniden yapılmıştır. Benzetim sonuçları ile global PSS ve TCSC’nin koordineli kullanımıyla hem alanlar arası salınımın modlarının başarıyla sönümlendirildiği hem de alanlar arası güç aktarımının iyileştirildiği gösterilmiştir.

Kaynakça

  • 1. IEEE Special Publication, 1995. Inter-area Oscillations in Power Systems (95-TP-101-1995).
  • 2. Klein, M., Rogers, G.J., Kundur, P., 1991. A Fundamental Study of Inter-area Oscillations in Power Systems. IEEE Transactions on Power Systems, 6(3), 914-921.
  • 3. Heniche, A., Kamwa, I., 2002. Control Loops Selection to Damp Inter-area Oscillations of Electrical Networks. 2002 IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 240.
  • 4. Aboul-Ela, A.S., McCalley, J., Fouad, A., 1996. Damping Controller Design for Power System Oscillations Using Global Signals. IEEE Transactions on Power Systems, 11(2), 767-773.
  • 5. Kamwa, I., Grondin, R., Hebert, Y., 2001. Wide-Area Measurement Based Stabilizing Control of Large Power Systems - A Decentralized/ Hierarchical Approach. IEEE Transactions on Power System, 16(1), 136-153.
  • 6. Dobreseu, M., Grondin, R., Heniche, A., Kamwa, I., Lefebvre, D., Trudel, G., 2005. Assesing the Technical Value of FACTS-based Wide Area Damping Control Loops. 2005 IEEE PES General Meeting, 1636-1645.
  • 7. Kundur, P., 1994. Power System Stability and Control. McGraw-Hill, New York, 1176.
  • 8. Paserba, J., 1996. Analysis and Control of Power System Oscillation. CIGRE Special Publication (38.01.07).
  • 9. Chow, J.H., Larsen, E.V., Sanchez-Gasca, J. J., 1995. Concepts for Design of FACTS Controllers to Damp Power Swings, IEEE Transactions on Power Systems. 10, 948-955.
  • 10. Chow, J., Ren, H., Sanchez-Gasca, J.J., Wang, S., 2000. Power System Damping Controller Design Using Multiple Input Signals. IEEE Control Systems Magazine, 20(4), 82-90.
  • 11. Taranto, G.N., Chow, J.H., 1995. A Robust Frequency Domain Optimization Technique for Tuning Series Compensation Damping Controllers. IEEE Transactions on Power Systems, 10(3), 1219-1225.
  • 12. Paserba, J.J., Miller, N.W., Larsen, E.V., Piwko, R.J., 1995. A Thyristor Controlled Series Compensation Model for Power System Stability Analysis. IEEE Transactions on Power Delivery, 10(3), 1471-1478.
  • 13. Lei, X., Jiang, D., Retzmann, D., 2007. Stability Improvement in Power Systems with Non‐linear TCSC Control Strategies. European Transactions on Electrical Power, 10, 339- 345.
  • 14. Chaudhuri, B., Pal, B.C., 2004. Robust Damping of Multiple Swing Modes Employing Global Stabilizing Signals with a TCSC. IEEE Transactions on Power Systems, 19(1), 499-506.
  • 15. Wivutbudsiri, S., Hongesombut, K., Rungrangpitayagon, J., 2014. Wide-area Power System Control Using Thyristor Controlled Series Capacitor Based Fuzzy Logic Controller Designed by Observed Signals. 2014 International Electrical Engineering Congress (iEECON), Chonburi, 1-4.
  • 16. Prakash, A., Moursi, M.S.E., Parida S.K., El-Saadany, E.F., 2023. Design of Wide Area Damping Controller Based on Clustering of Inter-Area Oscillations. 2023 IEEE PES Conference on Innovative Smart Grid Technologies-Middle East (ISGT Middle East), Abu Dhabi.
  • 17. Kumar, K., Prakash, A., Parida, S.K., 2023. Wide-Area Damping Controller Design with TCSC Using Active Disturbance Rejection Control. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), London, 1-5.
  • 18. Prakash, A., Singh, P., Kumar K., Parida, S.K., 2021. Design of TCSC Based Optimal Wide Area Power System Stabilizer for Low-Frequency Oscillation. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, 1-6.
  • 19. Prakash, A., Moursi, M.S.E., Parida, S.K., Kumar K., El-Saadany, E.F., 2023. Damping of Inter-Area Oscillations With Frequency Regulation in Power Systems Considering High Penetration of Renewable Energy Sources. IEEE Transactions on Industry (Erken Görünüm)
  • 20. Haugdal, H., Uhlen K., Jóhannsson, H., 2023. A Novel Phasor Power Oscillation Damper With Adaptive Phase Compensation, Achieved Using Multiple Model Adaptive Estimation. IEEE Transactions on Power Systems, 38(4), 3179-3188.
  • 21. Prakash, A., Kumar, K., Parida, S.K., 2023. A Modal Transformation Approach to Design Reduced Order Functional Observer-Based WADC for Low-Frequency Oscillations. IEEE Transactions on Power Systems, 38(4), 3593-3604.
  • 22. Yang, N., Liu Q., McCalley, J.D., 1998. TCSC Controller Design for Damping Interarea Oscillations. IEEE Transactions on Power Systems, 13(4), 1304-1310.
  • 23. Cai. L.J., Erlich, I., 2005. Simultaneous Coordinated Tuning of PSS and FACTS Damping Controllers in Large Power Systems. IEEE Transactions on Power Systems, 20, 294-300.
  • 24. Davalos, R.J., Ramirez, J.M., Valenzuela, V., 2000. Coordination of FACTS-based Stabilizers for Damping Oscillations. IEEE Power Engineering Review, 20, 46-49.
  • 25. Dotta, D., Decker, I.C., Silva, A.S., 2008. Wide-area Measurements-based Two-level Control Design Considering Signal Transmission Delay. IEEE Trans. Power Syst., 24(1), 208-216.
  • 26. Chaudhuri, B., Majumder, R., Pal, B.C. 2007. Implementation and Test Results of a Wide-area Measurement-based Controller for Damping Interarea Oscillations Considering Signal-transmission Delay. IET Gener Trans Distr, 1(1), 1-7.
  • 27. Chaudhuri, B., Majumder, R., Pal, B. 2004. Wide-Area Measurement-based Stabilizing Control of Power System Considering Signal Transmission Delay. IEEE Transactions on Power Systems, 19(4), 1971-1979.
  • 28. Beiraghi, M., Ranjbar, A., 2016. Adaptive Delay Compensator for the Robust Wide-area Damping Controller Design. IEEE Transactions on Power Systems 31(6), 4966-4976.
  • 29. Zhang, S., Vittal, V., 2014. Design of Wide-Area Damping Control Robust to Transmission Delay Using µ -synthesis Approach. 2014 IEEE PES General Meeting Conference & Exposition, IEEE, 1-5.
  • 30. Chow, J.H., Ghiocel, S.G., 2012. An Adaptive Wide-Area Power System Controller using Synchrophasor Data, Book Chapter in Control and Optimization Methods for Electric Smart Grids. Springer, Power Electronics and Power Systems, 3(3), 327-342, 371.
  • 31. Başel, M.B., Mete, A.N., 2022. An Adaptive Network Latency Compensator Design for Wide Area Damping Control of Power System Oscillations. Electrical Engineering, 36(2), 2793-2803.
  • 32. Sanchez-Gasca, J.J. (Ed)., 2012. Identification of Electromechanical Modes in Power Systems”, IEEE Task Force Report, Special Publication (TP462).
  • 33. Pagola, F.L., Perez-Arriaga, I.J., Verghese, G.C., 1989. On Sensivitivities, Residues and Participations: Applications to Oscillatory Stability Analysis and Control. IEEE Transactions on Power Systems, 4, 278-285.
  • 34. Hamdan, A.M.A., Elabdalla A.M., 1988. Geometric Measures of Modal Controllability and Observability of Power System Models. Electric Power System Research, 15, 147-155.
  • 35. Heniche, A., Kamwa, I., 2008. Assessment of Two Methods to Select Wide-Area Signals for Power System Damping Control. IEEE Transactions on Power Systems, 23(2), 572-581.
  • 36. Başel, M.B., 2019. Alanlar Arası Salınım Sönümlenmesi için TCSC ve PSS Tabanlı İki Farklı Geniş Alan Kontrol Sistemi Tasarımı, Yüksek Lisans Tezi, Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Elk-Elektronik Mühendisliği Anabilim Dalı, Mersin, 73.
  • 37. Jovcic, D., Pillai, G.N., 2005. Analytical Modeling of TCSC Dynamics. IEEE Transactions on Power Delivery, 20(2), 1097-1104.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Devreleri ve Sistemleri, Elektrik Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Mahir Bülent Başel 0009-0000-8596-4690

Ahmet Naci Mete 0000-0002-0406-8577

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Başel, M. B., & Mete, A. N. (2023). Güç Sistemlerinde Alanlar-Arası Salınımlar için bir Tristör Kontrollü Seri Kapasitör (TCSC) Tabanlı Geniş-Alan Sönümleme Sistemi Tasarımı. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1061-1076. https://doi.org/10.21605/cukurovaumfd.1410695