Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effect of Different Parameters of Phase Change Materials on Heat Exchanger Performance

Yıl 2023, , 1117 - 1128, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410784

Öz

Technological improvements and increasing energy demand necessitate energy efficient designs for heat transfer systems. The storage and reuse of heat energy plays an important role in the development of energy-efficient systems. Phase change materials (PCMs) are crucial components which increase energy efficiency in heat exchangers as can be applied to many systems. In this study, the heat transfer performance of different types of phase change materials in a regenerative heat exchanger was investigated according to different parameters. Reynolds number depending on the hot fluid velocity (Re=400, 800, 1200, 1600), hot fluid inlet temperature (Tsıcak,giriş=40, 60, 70, 80℃), and different types of phase change materials (RT60, RT100, and SP70) are the parameters used in this study. ANSYS Fluent software was used for computational fluid dynamics analysis. As a result, it has been determined that when the Reynolds number of the hot fluid in the heat exchanger was increased in the range of Re=400-1600, the heat transfer effectiveness increase of 17%; when the hot fluid inlet temperature was increased in the range of Thot,inlet=40-80℃, the heat transfer effectiveness increase of 21%. As regards the effect of different types of phase change materials, the heat transfer effectiveness was 81% for RT60, 79% for SP70 and 76% for RT100. It has been evaluated that, with the results obtained from this study, heat exchangers with higher heat transfer effectiveness and higher energy storage capacity can be designed.

Kaynakça

  • 1. Diaconu, B.M., Cruceru, M., Anghelescu, L. 2023. A Critical Review on Heat Transfer Enhancement Techniques in Latent Heat Storage Systems Based on Phase Change Materials. Passive and Active Techniques, System Designs and Optimization. Journal of Energy Storage, 61, 106830.
  • 2. Rogowski, M., Andrzejczyk, R. 2023. Recent Advances of Selected Passive Heat Transfer Intensification Methods for Phase Change Material-Based Latent Heat Energy Storage Units: A Review. International Communications in Heat and Mass Transfer, 144, 106795.
  • 3. Afaynou, I., Faraji, H., Choukairy, K., Arshad, A., Arıcı, M. 2023. Heat Transfer Enhancement of Phase-Change Materials (PCMs) Based Thermal Management Systems for Electronic Components: A Review of Recent Advances. International Communications in Heat and Mass Transfer, 143, 106690.
  • 4. Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2007. Application of Phase Change Materials in Thermal Management of Electronics. Applied Thermal Engineering, 27(17-18), 2822-2832.
  • 5. Tan, F.L., Tso, C.P., 2004. Cooling of Mobile Electronic Devices Using Phase Change Materials. Applied Thermal Engineering, 24(2-3), 159-169.
  • 6. Afaynou, I., Faraji, H., Choukairy, K., Arshad, A., Arıcı, M., 2023. Heat Transfer Enhancement of Phase-Change Materials (PCMs) Based Thermal Management Systems for Electronic Components: A Review of Recent Advances. International Communications in Heat and Mass Transfer, 143, 106690.
  • 7. Kenisarin, M., Mahkamov, K., 2007. Solar Energy Storage Using Phase Change Materials. Renewable and Sustainable Energy Reviews, 11(9), 1913-1965.
  • 8. Xiao, X., Zhang, P., Li, M., 2013. Thermal Characterization of Nitrates and Nitrates/Expanded Graphite Mixture Phase Change Materials for Solar Energy Storage. Energy Conversion and Management, 73, 86-94.
  • 9. Shon, J., Kim, H., Lee, K., 2014. Improved Heat Storage Rate for an Automobile Coolant Waste Heat Recovery System Using Phase-Change Material in a Fin–Tube Heat Exchanger. Applied Energy, 113, 680-689.
  • 10. Pandiyarajan, V., Chinnappandian, M., Raghavan, V., Velraj, R., 2011. Second Law Analysis of a Diesel Engine Waste Heat Recovery with a Combined Sensible and Latent Heat Storage System. Energy Policy, 39(10), 6011-6020.
  • 11. Soni, V., Kumar, A., Jain, V.K., 2018. Performance Evaluation of Nano-Enhanced Phase Change Materials During Discharge Stage in Waste Heat Recovery. Renewable Energy, 127, 587-601.
  • 12. Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2007. Application of Phase Change Materials in Thermal Management of Electronics. Applied Thermal Engineering, 27(17-18), 2822-2832.
  • 13. Sayyar, M., Weerasiri, R.R., Soroushian, P., Lu, J., 2014. Experimental and Numerical Study of Shape-Stable Phase-Change Nanocomposite Toward Energy-Efficient Building Constructions. Energy and Buildings, 75, 249-255.
  • 14. Pomianowski, M., Heiselberg, P., Zhang, Y., 2013. Review of Thermal Energy Storage Technologies Based on PCM Application in Buildings. Energy and Buildings, 67, 56-69.
  • 15. Khudhair, A.M., Farid, M.M., 2004. A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials. Energy Conversion and Management, 45(2), 263-275.
  • 16. Fragnito, A., Bianco, N., Iasiello, M., Mauro, G. M., Mongibello, L., 2022. Experimental and Numerical Analysis of a Phase Change Material-Based Shell-and-Tube Heat Exchanger for Cold Thermal Energy Storage. Journal of Energy Storage, 56, 105975.
  • 17. Faraj, K., Khaled, M., Faraj, J., Hachem, F., Castelain, C., 2020. Phase Change Material Thermal Energy Storage Systems for Cooling Applications in Buildings: A review. Renewable and Sustainable Energy Reviews, 119, 109579.
  • 18. Hathal, M.M., Al-Jadir, T., Al-Sheikh, F., Edan, M.S., Haider, M.J., Rsool, R.A., Badawy, T., 2023. Thermal Performance Characterization of a Thermal Energy Storage Tank with Various Phase Change Materials. International Journal of Thermofluids, 18, 100322.
  • 19. Konuklu, Y., Paksoy, H.Ö., 2011. Faz Değiştiren Maddeler ile Binalarda Enerji Verimliliği. Ulusal Tesisat Mühendisliği Kongresi, İzmir.
  • 20. Koukou, M.K., Vrachopoulos, M.G., Tachos, N.S., Dogkas, G., Lymperis, K., Stathopoulos, V., 2018. Experimental and Computational Investigation of a Latent Heat Energy Storage System with a Staggered Heat Exchanger for Various Phase Change Materials. Thermal Science and Engineering Progress, 7, 87-98.
  • 21. Koşan, M., Aktaş, M., 2018. Faz Değiştiren Malzemelerle Termal Enerji Depolayan Bir Isı Değiştiricisinin Sayısal Analizi. Politeknik Dergisi, 21(2), 403-409.
  • 22. Ljungdahl, V., Jradi, M., Veje, C., 2022. A Decision Support Model for Waste Heat Recovery Systems Design in Data Center and High-Performance Computing Clusters Utilizing Liquid Cooling and Phase Change Materials. Applied Thermal Engineering, 201, 117671.
  • 23. Mat, S., Al-Abidi, A.A., Sopian, K., Sulaiman, M.Y., Mohammad, A.T., 2013. Enhance Heat Transfer for PCM Melting in Triplex Tube with Internal–External Fins. Energy Conversion and Management, 74, 223-236.
  • 24. Rana, S., Zunaid, M., Kumar, R., 2022. CFD Approach for The Enhancement of Thermal Energy Storage in Phase Change Material Charged Heat Exchanger. Case Studies in Thermal Engineering, 33, 101921.
  • 25. Tomizawa, Y., Sasaki, K., Kuroda, A., Takeda, R., Kaito, Y., 2016. Experimental and Numerical Study on Phase Change Material (PCM) for Thermal Management of Mobile Devices. Applied Thermal Engineering, 98, 320-329.
  • 26. Youssef, W., Ge, Y.T., Tassou, S.A., 2018. CFD Modelling Development and Experimental Validation of a Phase Change Material (PCM) Heat Exchanger with Spiral-Wired Tubes. Energy Conversion and Management, 157, 498-510.
  • 27. Osterman, E., Butala, V., Stritih, U., 2015. PCM Thermal Storage System for ‘Free’ Heating and Cooling of Buildings. Energy and Buildings, 106, 125-133.
  • 28. Nithyanandam, K., Pitchumani, R., 2014. Optimization of an Encapsulated Phase Change Material Thermal Energy Storage System. Solar Energy, 107, 770-788.
  • 29. Wang, L., Wang, C., Guo, Y., Wu, Y., Bai, W., Che, D., 2021. Novel Rotary Regenerative Heat Exchanger Using Cascaded Phase Change Material Capsules. Applied Thermal Engineering, 188, 116619.
  • 30. Rajagopal, M., Velraj, R., 2016. Experimental Investigation on The Phase Change Material-Based Modular Heat Exchanger for Thermal Management of a Building. International Journal of Green Energy, 13(11), 1109-1119.
  • 31. Zhou, D., Zhao, C.Y., 2011. Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials. Applied Thermal Engineering, 31(5), 970-977.
  • 32. Jaworski, M., 2014. Thermal Performance of Building Element Containing Phase Change Material (PCM) Integrated with Ventilation System–An Experimental Study. Applied Thermal Engineering, 70(1), 665-674.
  • 33. Kaizawa, A., Maruoka, N., Kawai, A., Kamano, H., Jozuka, T., Senda, T., Akiyama, T., 2008. Thermophysical and Heat Transfer Properties of Phase Change Material Candidate for Waste Heat Transportation System. Heat and Mass Transfer, 44, 763-769.
  • 34. Palmer, B., Arshad, A., Yang, Y., Wen, C., 2023. Energy Storage Performance Improvement of Phase Change Materials-Based Triplex-Tube Heat Exchanger (TTHX) Using Liquid–Solid Interface-Informed Fin Configurations. Applied Energy, 333, 120576.
  • 35. Wang, Z., Zhang, H., Dou, B., Zhang, G., Wu, W., Zhou, X., 2022. Effect of Copper Metal Foam Proportion on Heat Transfer Enhancement in the Melting Process of Phase Change Materials. Applied Thermal Engineering, 201, 117778.
  • 36. Kittusamy, R.K., Rajagopal, V., Felix, P.G., 2023. Numerical and Experimental Investigation on the Melting Heat Transfer of Nanographene-Enhanced Phase Change Material Composites for Thermal Energy Storage Applications. International Journal of Heat and Mass Transfer, 206, 123940.
  • 37. Xu, W., Huang, T., Huang, S.M., Zhuang, Y., 2023. Regulation Mechanism of Magnetic Field on Non-Newtonian Melting and Energy Storage Performance of Metal Foam Composite Nano-Enhanced Phase Change Materials. International Journal of Heat and Mass Transfer, 200, 123501.
  • 38. Sudhakaran, S., Terese, M., Mohan, Y., Thampi, A.D., Rani, S., 2023. Influence of Various Parameters on the Cooling Performance of Battery Thermal Management Systems Based on Phase Change Materials. Applied Thermal Engineering, 222, 119936.
  • 39. Soliman, A.M., Yousef, M.S., Ookawara, S., Hassan, H., 2023. Experimental Study of Using System of Flat Heat Pipe-Phase Change Material Inclusion Heat Sink for Thermal Regulation of Simulated PV. Experimental Heat Transfer, 36(5), 648-664.
  • 40. Rubitherm Technologies GmbH, PCM-Products, www.rubitherm.com, Access date: 31.10.2022.
  • 41. Kilic, M., Sahin, M., 2022. Experimental Investigation of the Effect of Different Parameters on Heat Transfer Performance in a Double Pipe Heat Exchanger. 3th International Dicle Scientific Research and Innovation Congress, Diyarbakir, 48-58.

Faz Değiştiren Malzemelerin Isı Değiştiricisi Performansına Etkisinin, Farklı Parametreler İçin İncelenmesi

Yıl 2023, , 1117 - 1128, 28.12.2023
https://doi.org/10.21605/cukurovaumfd.1410784

Öz

Teknolojik ilerlemeler ve artan enerji talebi, ısı transfer sistemlerinde enerji tasarruflu tasarımları gerekli kılmaktadır. Enerji tasarruflu sistemlerin geliştirilmesinde, ısı enerjisinin depolanması ve tekrar kullanılabilmesi önemli bir rol oynamaktadır. Faz değiştiren malzemeler (FDM), birçok sisteme uygulanabildiği gibi ısı değiştiricilerinde de sistemin enerji veriminde önemli artış sağlayan bir bileşendir. Bu çalışmada, rejeneratif bir ısı değiştiricisinde farklı tipteki faz değiştiren malzemelerin ısı transfer performansı farklı parametrelere göre incelenmiştir. Çalışmada kullanılan parametreler; sıcak akışkan hızına bağlı Reynolds sayısı (Re=400, 800, 1200, 1600), sıcak akışkan giriş sıcaklığı (Tsıcak,giriş=40, 60, 70, 80℃) ve farklı tipteki faz değiştiren malzemelerdir (RT60, RT100 ve SP70). Hesaplamalı akışkanlar dinamiği analizi için ANSYS Fluent yazılımı kullanılmıştır. Sonuç olarak, ısı değiştiricisinde sıcak akışkanın Reynolds sayısı Re=400-1600 aralığında arttırıldığında ısı transfer etkinliğinde %17 artış; sıcak akışkan giriş sıcaklığı Tsıcak,giriş=40-80℃ aralığında arttırıldığında ısı transfer etkinliğinde %21 artış tespit edilmiştir. Farklı tipteki faz değiştiren malzemelerin etkisi incelendiğinde ise; RT60 için ısı transfer etkinliği %81, SP70 için ısı transfer etkinliği %79 ve RT100 için ise ısı transfer etkinliği %76 olarak tespit edilmiştir. Bu çalışmadan elde edilen sonuçlarla, ısı transfer etkinliği ve enerji depolama kapasitesi daha yüksek ısı değiştiricilerin tasarlanabileceği değerlendirilmiştir.

Kaynakça

  • 1. Diaconu, B.M., Cruceru, M., Anghelescu, L. 2023. A Critical Review on Heat Transfer Enhancement Techniques in Latent Heat Storage Systems Based on Phase Change Materials. Passive and Active Techniques, System Designs and Optimization. Journal of Energy Storage, 61, 106830.
  • 2. Rogowski, M., Andrzejczyk, R. 2023. Recent Advances of Selected Passive Heat Transfer Intensification Methods for Phase Change Material-Based Latent Heat Energy Storage Units: A Review. International Communications in Heat and Mass Transfer, 144, 106795.
  • 3. Afaynou, I., Faraji, H., Choukairy, K., Arshad, A., Arıcı, M. 2023. Heat Transfer Enhancement of Phase-Change Materials (PCMs) Based Thermal Management Systems for Electronic Components: A Review of Recent Advances. International Communications in Heat and Mass Transfer, 143, 106690.
  • 4. Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2007. Application of Phase Change Materials in Thermal Management of Electronics. Applied Thermal Engineering, 27(17-18), 2822-2832.
  • 5. Tan, F.L., Tso, C.P., 2004. Cooling of Mobile Electronic Devices Using Phase Change Materials. Applied Thermal Engineering, 24(2-3), 159-169.
  • 6. Afaynou, I., Faraji, H., Choukairy, K., Arshad, A., Arıcı, M., 2023. Heat Transfer Enhancement of Phase-Change Materials (PCMs) Based Thermal Management Systems for Electronic Components: A Review of Recent Advances. International Communications in Heat and Mass Transfer, 143, 106690.
  • 7. Kenisarin, M., Mahkamov, K., 2007. Solar Energy Storage Using Phase Change Materials. Renewable and Sustainable Energy Reviews, 11(9), 1913-1965.
  • 8. Xiao, X., Zhang, P., Li, M., 2013. Thermal Characterization of Nitrates and Nitrates/Expanded Graphite Mixture Phase Change Materials for Solar Energy Storage. Energy Conversion and Management, 73, 86-94.
  • 9. Shon, J., Kim, H., Lee, K., 2014. Improved Heat Storage Rate for an Automobile Coolant Waste Heat Recovery System Using Phase-Change Material in a Fin–Tube Heat Exchanger. Applied Energy, 113, 680-689.
  • 10. Pandiyarajan, V., Chinnappandian, M., Raghavan, V., Velraj, R., 2011. Second Law Analysis of a Diesel Engine Waste Heat Recovery with a Combined Sensible and Latent Heat Storage System. Energy Policy, 39(10), 6011-6020.
  • 11. Soni, V., Kumar, A., Jain, V.K., 2018. Performance Evaluation of Nano-Enhanced Phase Change Materials During Discharge Stage in Waste Heat Recovery. Renewable Energy, 127, 587-601.
  • 12. Kandasamy, R., Wang, X.Q., Mujumdar, A.S., 2007. Application of Phase Change Materials in Thermal Management of Electronics. Applied Thermal Engineering, 27(17-18), 2822-2832.
  • 13. Sayyar, M., Weerasiri, R.R., Soroushian, P., Lu, J., 2014. Experimental and Numerical Study of Shape-Stable Phase-Change Nanocomposite Toward Energy-Efficient Building Constructions. Energy and Buildings, 75, 249-255.
  • 14. Pomianowski, M., Heiselberg, P., Zhang, Y., 2013. Review of Thermal Energy Storage Technologies Based on PCM Application in Buildings. Energy and Buildings, 67, 56-69.
  • 15. Khudhair, A.M., Farid, M.M., 2004. A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials. Energy Conversion and Management, 45(2), 263-275.
  • 16. Fragnito, A., Bianco, N., Iasiello, M., Mauro, G. M., Mongibello, L., 2022. Experimental and Numerical Analysis of a Phase Change Material-Based Shell-and-Tube Heat Exchanger for Cold Thermal Energy Storage. Journal of Energy Storage, 56, 105975.
  • 17. Faraj, K., Khaled, M., Faraj, J., Hachem, F., Castelain, C., 2020. Phase Change Material Thermal Energy Storage Systems for Cooling Applications in Buildings: A review. Renewable and Sustainable Energy Reviews, 119, 109579.
  • 18. Hathal, M.M., Al-Jadir, T., Al-Sheikh, F., Edan, M.S., Haider, M.J., Rsool, R.A., Badawy, T., 2023. Thermal Performance Characterization of a Thermal Energy Storage Tank with Various Phase Change Materials. International Journal of Thermofluids, 18, 100322.
  • 19. Konuklu, Y., Paksoy, H.Ö., 2011. Faz Değiştiren Maddeler ile Binalarda Enerji Verimliliği. Ulusal Tesisat Mühendisliği Kongresi, İzmir.
  • 20. Koukou, M.K., Vrachopoulos, M.G., Tachos, N.S., Dogkas, G., Lymperis, K., Stathopoulos, V., 2018. Experimental and Computational Investigation of a Latent Heat Energy Storage System with a Staggered Heat Exchanger for Various Phase Change Materials. Thermal Science and Engineering Progress, 7, 87-98.
  • 21. Koşan, M., Aktaş, M., 2018. Faz Değiştiren Malzemelerle Termal Enerji Depolayan Bir Isı Değiştiricisinin Sayısal Analizi. Politeknik Dergisi, 21(2), 403-409.
  • 22. Ljungdahl, V., Jradi, M., Veje, C., 2022. A Decision Support Model for Waste Heat Recovery Systems Design in Data Center and High-Performance Computing Clusters Utilizing Liquid Cooling and Phase Change Materials. Applied Thermal Engineering, 201, 117671.
  • 23. Mat, S., Al-Abidi, A.A., Sopian, K., Sulaiman, M.Y., Mohammad, A.T., 2013. Enhance Heat Transfer for PCM Melting in Triplex Tube with Internal–External Fins. Energy Conversion and Management, 74, 223-236.
  • 24. Rana, S., Zunaid, M., Kumar, R., 2022. CFD Approach for The Enhancement of Thermal Energy Storage in Phase Change Material Charged Heat Exchanger. Case Studies in Thermal Engineering, 33, 101921.
  • 25. Tomizawa, Y., Sasaki, K., Kuroda, A., Takeda, R., Kaito, Y., 2016. Experimental and Numerical Study on Phase Change Material (PCM) for Thermal Management of Mobile Devices. Applied Thermal Engineering, 98, 320-329.
  • 26. Youssef, W., Ge, Y.T., Tassou, S.A., 2018. CFD Modelling Development and Experimental Validation of a Phase Change Material (PCM) Heat Exchanger with Spiral-Wired Tubes. Energy Conversion and Management, 157, 498-510.
  • 27. Osterman, E., Butala, V., Stritih, U., 2015. PCM Thermal Storage System for ‘Free’ Heating and Cooling of Buildings. Energy and Buildings, 106, 125-133.
  • 28. Nithyanandam, K., Pitchumani, R., 2014. Optimization of an Encapsulated Phase Change Material Thermal Energy Storage System. Solar Energy, 107, 770-788.
  • 29. Wang, L., Wang, C., Guo, Y., Wu, Y., Bai, W., Che, D., 2021. Novel Rotary Regenerative Heat Exchanger Using Cascaded Phase Change Material Capsules. Applied Thermal Engineering, 188, 116619.
  • 30. Rajagopal, M., Velraj, R., 2016. Experimental Investigation on The Phase Change Material-Based Modular Heat Exchanger for Thermal Management of a Building. International Journal of Green Energy, 13(11), 1109-1119.
  • 31. Zhou, D., Zhao, C.Y., 2011. Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials. Applied Thermal Engineering, 31(5), 970-977.
  • 32. Jaworski, M., 2014. Thermal Performance of Building Element Containing Phase Change Material (PCM) Integrated with Ventilation System–An Experimental Study. Applied Thermal Engineering, 70(1), 665-674.
  • 33. Kaizawa, A., Maruoka, N., Kawai, A., Kamano, H., Jozuka, T., Senda, T., Akiyama, T., 2008. Thermophysical and Heat Transfer Properties of Phase Change Material Candidate for Waste Heat Transportation System. Heat and Mass Transfer, 44, 763-769.
  • 34. Palmer, B., Arshad, A., Yang, Y., Wen, C., 2023. Energy Storage Performance Improvement of Phase Change Materials-Based Triplex-Tube Heat Exchanger (TTHX) Using Liquid–Solid Interface-Informed Fin Configurations. Applied Energy, 333, 120576.
  • 35. Wang, Z., Zhang, H., Dou, B., Zhang, G., Wu, W., Zhou, X., 2022. Effect of Copper Metal Foam Proportion on Heat Transfer Enhancement in the Melting Process of Phase Change Materials. Applied Thermal Engineering, 201, 117778.
  • 36. Kittusamy, R.K., Rajagopal, V., Felix, P.G., 2023. Numerical and Experimental Investigation on the Melting Heat Transfer of Nanographene-Enhanced Phase Change Material Composites for Thermal Energy Storage Applications. International Journal of Heat and Mass Transfer, 206, 123940.
  • 37. Xu, W., Huang, T., Huang, S.M., Zhuang, Y., 2023. Regulation Mechanism of Magnetic Field on Non-Newtonian Melting and Energy Storage Performance of Metal Foam Composite Nano-Enhanced Phase Change Materials. International Journal of Heat and Mass Transfer, 200, 123501.
  • 38. Sudhakaran, S., Terese, M., Mohan, Y., Thampi, A.D., Rani, S., 2023. Influence of Various Parameters on the Cooling Performance of Battery Thermal Management Systems Based on Phase Change Materials. Applied Thermal Engineering, 222, 119936.
  • 39. Soliman, A.M., Yousef, M.S., Ookawara, S., Hassan, H., 2023. Experimental Study of Using System of Flat Heat Pipe-Phase Change Material Inclusion Heat Sink for Thermal Regulation of Simulated PV. Experimental Heat Transfer, 36(5), 648-664.
  • 40. Rubitherm Technologies GmbH, PCM-Products, www.rubitherm.com, Access date: 31.10.2022.
  • 41. Kilic, M., Sahin, M., 2022. Experimental Investigation of the Effect of Different Parameters on Heat Transfer Performance in a Double Pipe Heat Exchanger. 3th International Dicle Scientific Research and Innovation Congress, Diyarbakir, 48-58.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Turan Güneş Bu kişi benim 0009-0000-2263-3421

Mahir Şahin 0000-0002-9565-9160

Mustafa Kılıç 0000-0002-8006-149X

Yayımlanma Tarihi 28 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Güneş, T., Şahin, M., & Kılıç, M. (2023). Investigation of the Effect of Different Parameters of Phase Change Materials on Heat Exchanger Performance. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1117-1128. https://doi.org/10.21605/cukurovaumfd.1410784