Araştırma Makalesi
BibTex RIS Kaynak Göster

Lightweighting of an M3 Class Electric Bus Under Different Scenarios with Finite Element Analysis

Yıl 2024, , 9 - 22, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459322

Öz

Studies carried out worldwide and in our country have made the issue of energy efficiency throughout the life cycle of vehicles an important priority, from the raw material stage to the recycling processes, due to the increase in greenhouse gas emissions and the decrease in energy resources. Reducing vehicle weight significantly increases fuel economy, especially for public transportation vehicles that serve long-distance journeys. Carrying out verification processes with finite element analyzes of these vehicles before proceeding with prototype manufacturing provides cost and time advantages. When the studies in the literature are examined, finite element models of similar public transportation vehicles have been established and examined with different methods. However, it has been observed that the forces acting on the body frame cannot be fully represented in models where the finite element model is created only on the body. In addition to all this, the studies in the literature generally do not include a commercial design and it seems that the layout plan and technical features are not examined in detail. In this study, to examine the behavior of an M3 class electric bus under operating conditions, the bus was modeled including the entire body, including the axles, and structural analyzes were carried out in the three scenarios to which it is most exposed in motion: 1G acceleration at full load, lateral acceleration and sudden braking and acceleration scenarios. As a result of the analysis, some design changes were made to the body frame and the vehicle weight was reduced. The new design was analyzed again under the same boundary conditions and a verification study was carried out. After the design changes, a mass saving of 19.694 kg in the left wall region of the body frame, 17.346 kg in the right side wall region, 72.43 kg in the ceiling region, and 122.53 kg in the chassis and other regions was achieved, resulting in a weight reduction of 7.41%.

Kaynakça

  • 1. European Union, 2022. Directorate-General for Mobility and Transport European Commission, EU transport in Figures-MIAA22001ENN.
  • 2. Tzeiranaki, S.T., Economidou, M., Bertoldi, P., Thiel, C., Fontaras, G., Clementi, E.L., De Los Rios, C.F., 2023. The Impact of Energy Efficiency and Decarbonisation Policies on the European Road Transport Sector. Transportation Research Part A: Policy and Practice, 170, 103623.
  • 3. Koffler, C., Rohde-Brandenburger, K., 2010. On the Calculation of Fuel Savings Through Lightweight Design in Automotive Life Cycle Assessments. The International Journal of Life Cycle Assessment, 15, 128-135.
  • 4. Yuce, C., Karpat, F., Yavuz, N., Sendeniz, G., 2014. A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure. Sustainability, 6(7), 4608-4631.
  • 5. Cimprich, A., Sadayappan, K., Young, S.B., 2023. Lightweighting Electric Vehicles: Scoping Review of Life Cycle Assessments. Journal of Cleaner Production, 139692.
  • 6. European Union, 2015. Light Weighting as a Means of Improving Heavy Duty Vehicles’ Energy Efficiency and Overall CO2 Emissions, Rep. DG Clim. Action, 1, 199.
  • 7. Arslan, T.A., Solmaz, H. 2018. M3 Kategorisi Bir Otobüs Tasarımı ve Yapisal Analizleri. In Proceedings on International Conference on Technology and Science, Antalya, 343-351.
  • 8. Karamert, S., Demir, A., 2022. Ticari Otobüs Gövde Yapısında Topoloji Optimizasyonu Çalışması. International Journal of Advances in Engineering and Pure Sciences, 34(2), 229-234.
  • 9. Jung, Y., Lim, S., Kim, J., Min, S., 2020. Lightweight Design of Electric Bus Roof Structure Using Multi-Material Topology Optimisation. Structural and Multidisciplinary Optimization, 61, 1273-1285.
  • 10. Kongwat, S., Jongpradist, P., Hasegawa, H., 2020. Lightweight Bus Body Design and Optimization for Rollover Crashworthiness. International Journal of Automotive Technology, 21, 981-991.
  • 11. Raj, A., Ahamed, S., Rajath, H.G., Byregowda, H.V., 2020. Structural Analysis of Bus Body Frame Using Fea for Static and Dynamic Analysis. International Research Journal of Engineering and Technology (IRJET) 7(8), pp. 2975-2979.
  • 12. Fu, C.L., Bai, Y.C., Lin, C., Wang, W.W., 2019. Design Optimization of a Newly Developed Aluminum-Steel Multi-Material Electric Bus Body Structure. Structural and Multidisciplinary Optimization, 60, 2177-2187.
  • 13. Croccolo, D., De Agostinis, M., Vincenzi, N., 2011. Structural Analysis of an Articulated Urban Bus Chassis Via FEM: A Methodology Applied to a Case Study. Strojniški Vestnik-Journal of Mechanical Engineering, 57(11), 799-809.
  • 14. Tam, N.T., Le, T.P., Huynh, N.T., Nguyen, Q.M., 2023. Optimization of Frame Structure Coach 29/34 Seats in Static Durability State. Engineering Science and Technology, an International Journal, 47, 101523.
  • 15. Ko, H.Y., Shin, K.B., Jeon, K.W., Cho, S.H., 2009. A Study on the Crashworthiness and Rollover Characteristics of Low-Floor Bus Made of Sandwich Composites. Journal of Mechanical Science and Technology, 23, 2686-2693.
  • 16. Kabakçı, H., Solmaz, H., 2019. M3 Kategorisinde Bir Körüklü Otobüs Tasarımı ve Yapısal Analizleri. International Symposium on Automotıve Science and Technology, 5-6 September 2019 Ankara, Turkey.
  • 17. Haryanto, I., Raharjo, F., Kurdi, O., Haryadi, G., Santosa, S., Gunawan, L., 2018. Optimization of Bus Body Frame Structure for Weight Minimizing with Constraint of Natural Frequency Using Adaptive Single-Objective Method. International Journal of Sustainable Transportation Technology, 1, 9-14.

M3 Sınıfı Bir Elektrikli Otobüsün Farklı Senaryolar Altında Sonlu Elemanlar Analizleri ile Hafifletilmesi

Yıl 2024, , 9 - 22, 28.03.2024
https://doi.org/10.21605/cukurovaumfd.1459322

Öz

Dünya çapında ve ülkemizde yürütülen çalışmalar, taşıtların yaşam döngüsü boyunca enerji verimliliği konusunu, sera gazı salınımındaki artış ve enerji kaynaklarındaki azalmaya bağlı olarak, hammadde aşamasından geri dönüştürülme süreçlerine kadar önemli bir öncelik haline getirmiştir. Özellikle uzun mesafeli yolculuklara hizmet eden toplu taşıma araçları için taşıt ağırlığını azaltmak, yakıt tasarrufunu önemli ölçüde artırmaktadır. Bu taşıtların prototip imalata geçmeden önce sonlu elemanlar analizleri ile doğrulama süreçlerinin gerçekleştirilmesi maliyet ve zaman avantajı sağlamaktadır. Literatürde yapılan çalışmalar incelendiğinde benzer toplu taşıma araçlarının sonlu elemanlar modeli kurularak farklı yöntemler ile incelenmiştir. Ancak sonlu elemanlar modelinin sadece gövde üzerinde oluşturulduğu modellerde gövde karkasına etkiyen kuvvetlerin tam anlamıyla temsil edilemediği görülmüştür. Tüm bunlarla beraber literatürde yapılan çalışmalar genel olarak ticari bir tasarımı içermemekte ve yerleşim planı ve teknik özelliklerin detaylı incelenmediği görülmektedir. Bu çalışmada M3 sınıfı bir elektrikli otobüsün çalışma koşullarındaki davranışlarını incelemek için otobüs gövdesi, akslar dahil olmak üzere tamamını içerecek şekilde modellendi ve hareket halinde en çok maruz kaldığı üç senaryo olan tam yükte 1G ivmelenme, yanal ivmelenme ve ani frenleme ve hızlanma senaryolarında yapısal analizler gerçekleştirildi. Yapılan analizler sonucunda gövde karkasında bazı tasarımsal değişikliklere gidilmiş ve araç ağırlığı azaltılmıştır. Yeni tasarım tekrar aynı sınır şartlarında analiz edilerek doğrulama çalışması gerçekleştirilmiştir. Yapılan tasarım değişiklikleri sonrasında gövde karkasında sol duvar bölgesinde 19,694 kg, sağ yan duvar bölgesinde 17,346 kg, tavan bölgesinde 72,43, şasi ve diğer bölgelerde ise 122,53 kg’lık bir kütle tasarrufu sağlanarak toplamda %7,41 oranında bir hafifletme sağlanmıştır.

Kaynakça

  • 1. European Union, 2022. Directorate-General for Mobility and Transport European Commission, EU transport in Figures-MIAA22001ENN.
  • 2. Tzeiranaki, S.T., Economidou, M., Bertoldi, P., Thiel, C., Fontaras, G., Clementi, E.L., De Los Rios, C.F., 2023. The Impact of Energy Efficiency and Decarbonisation Policies on the European Road Transport Sector. Transportation Research Part A: Policy and Practice, 170, 103623.
  • 3. Koffler, C., Rohde-Brandenburger, K., 2010. On the Calculation of Fuel Savings Through Lightweight Design in Automotive Life Cycle Assessments. The International Journal of Life Cycle Assessment, 15, 128-135.
  • 4. Yuce, C., Karpat, F., Yavuz, N., Sendeniz, G., 2014. A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure. Sustainability, 6(7), 4608-4631.
  • 5. Cimprich, A., Sadayappan, K., Young, S.B., 2023. Lightweighting Electric Vehicles: Scoping Review of Life Cycle Assessments. Journal of Cleaner Production, 139692.
  • 6. European Union, 2015. Light Weighting as a Means of Improving Heavy Duty Vehicles’ Energy Efficiency and Overall CO2 Emissions, Rep. DG Clim. Action, 1, 199.
  • 7. Arslan, T.A., Solmaz, H. 2018. M3 Kategorisi Bir Otobüs Tasarımı ve Yapisal Analizleri. In Proceedings on International Conference on Technology and Science, Antalya, 343-351.
  • 8. Karamert, S., Demir, A., 2022. Ticari Otobüs Gövde Yapısında Topoloji Optimizasyonu Çalışması. International Journal of Advances in Engineering and Pure Sciences, 34(2), 229-234.
  • 9. Jung, Y., Lim, S., Kim, J., Min, S., 2020. Lightweight Design of Electric Bus Roof Structure Using Multi-Material Topology Optimisation. Structural and Multidisciplinary Optimization, 61, 1273-1285.
  • 10. Kongwat, S., Jongpradist, P., Hasegawa, H., 2020. Lightweight Bus Body Design and Optimization for Rollover Crashworthiness. International Journal of Automotive Technology, 21, 981-991.
  • 11. Raj, A., Ahamed, S., Rajath, H.G., Byregowda, H.V., 2020. Structural Analysis of Bus Body Frame Using Fea for Static and Dynamic Analysis. International Research Journal of Engineering and Technology (IRJET) 7(8), pp. 2975-2979.
  • 12. Fu, C.L., Bai, Y.C., Lin, C., Wang, W.W., 2019. Design Optimization of a Newly Developed Aluminum-Steel Multi-Material Electric Bus Body Structure. Structural and Multidisciplinary Optimization, 60, 2177-2187.
  • 13. Croccolo, D., De Agostinis, M., Vincenzi, N., 2011. Structural Analysis of an Articulated Urban Bus Chassis Via FEM: A Methodology Applied to a Case Study. Strojniški Vestnik-Journal of Mechanical Engineering, 57(11), 799-809.
  • 14. Tam, N.T., Le, T.P., Huynh, N.T., Nguyen, Q.M., 2023. Optimization of Frame Structure Coach 29/34 Seats in Static Durability State. Engineering Science and Technology, an International Journal, 47, 101523.
  • 15. Ko, H.Y., Shin, K.B., Jeon, K.W., Cho, S.H., 2009. A Study on the Crashworthiness and Rollover Characteristics of Low-Floor Bus Made of Sandwich Composites. Journal of Mechanical Science and Technology, 23, 2686-2693.
  • 16. Kabakçı, H., Solmaz, H., 2019. M3 Kategorisinde Bir Körüklü Otobüs Tasarımı ve Yapısal Analizleri. International Symposium on Automotıve Science and Technology, 5-6 September 2019 Ankara, Turkey.
  • 17. Haryanto, I., Raharjo, F., Kurdi, O., Haryadi, G., Santosa, S., Gunawan, L., 2018. Optimization of Bus Body Frame Structure for Weight Minimizing with Constraint of Natural Frequency Using Adaptive Single-Objective Method. International Journal of Sustainable Transportation Technology, 1, 9-14.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ahmet Özcan 0009-0004-4323-2079

Celalettin Yuce 0000-0003-1387-907X

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 1 Ocak 2024
Kabul Tarihi 28 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özcan, A., & Yuce, C. (2024). M3 Sınıfı Bir Elektrikli Otobüsün Farklı Senaryolar Altında Sonlu Elemanlar Analizleri ile Hafifletilmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(1), 9-22. https://doi.org/10.21605/cukurovaumfd.1459322