Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimal Design and Analysis of High-Frequency Isolation Transformer for Switched-Mode Power Converters

Yıl 2024, , 585 - 598, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1559912

Öz

High-frequency (HF) transformers have gained great interest in recent years due to the advent of powerful soft magnetic materials with low core loss in semiconductor power switches. Also, the optimal design of the HF transformer is a significant issue for high-performance energy conversion systems. In this paper, a 40W 50/12.5/25 V universal input and two output discontinuous-conduction mode (DCM) flyback transformer is designed by using mathematical calculations and analyzed via 3D ANSYS/Maxwell simulation including electromagnetic and loss analysis. It is shown that the simulation results accounting for hysteresis losses, eddy current losses, copper losses, and magnetic flux density determine the accuracy of the mathematical model calculation. Analyzes are performed at 100 kHz frequency levels. Results obtained will include core magnetic flux density, core/copper losses, leakage/magnetizing inductances, windings parasitic capacitances, input/output voltage, current values, and all design parameters. Finally, the proposed HF transformer's overall efficiency is calculated and presented. Significantly, the HF transformer achieves 97.8% efficiency thanks to the transformer's core and coil selection, B-H and B-P characteristics, one-to-one dimension design, and mesh operation. The dynamic and mathematical results of the designed transformer demonstrate the design and efficiency success

Kaynakça

  • 1. Elrajoubi, A.M., Ang, S.S., 2019. High-frequency transformer review and design for low-power solid-state transformer topology. 2019 IEEE Texas Power and Energy Conference (TPEC), 1-6.
  • 2. Ding, H., Zhao, W., Li, M., Zhang, L., Sun, Y., 2023. Electromagnetic vibration characteristics of high-frequency transformer under DC bias with different winding structures. Processes, 11(4), 1185.
  • 3. Yao, W., Lu, J., Taghizadeh, F., Bai, F., Seagar, A., 2023. Integration of SiC devices and high-frequency transformer for high-power renewable energy applications. Energies, 16(3), 1538.
  • 4. Mukherjee, S., Barbosa, P., 2023. Design and optimization of an integrated resonant inductor with high-frequency transformer for wide gain range DC–DC resonant converters in electric vehicle charging applications. IEEE Transactions on Power Electronics, 38(5), 6380-6394.
  • 5. Li, Z., Hsieh, E., Li, Q., Lee, F., 2023. High-frequency transformer design with medium-voltage insulation for resonant converter in solid-state transformer. IEEE Transactions on Power Electronics, 38(8), 9917-9932
  • 6. Olowu, T.O., Jafari, H., Moghaddami, M., Sarwat, A.I., 2020. Multiphysics and multiobjective design optimization of high-frequency transformers for solid-state transformer applications. IEEE Transactions on Industry Applications, 57(1), 1014-1023.
  • 7. Li, Z., Hsieh, Y.H., Li, Q., Lee, F.C., Ahmed, M.H., 2020. High-frequency transformer design with high-voltage insulation for modular power conversion from medium-voltage AC to 400-V DC. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 5053-5060.
  • 8. Dang, Y., Zhu, L., Liu, J., Zhan, C., Long, L., Ji, S., 2022. Module integral method for the calculation of frequency-dependent leakage inductance of high-frequency transformers. IEEE Transactions on Power Electronics, 37(6), 7028-7038.
  • 9. Rahman, S,, Candan, M.Y., Tamyurek, B., Aydin, E., Meşe, H., Aydemir, M.T., 2022. Design and implementation of a 10 kV/10 kW high-frequency center-tapped transformer. Electrical Engineering, 1-17.
  • 10. Barg, S., Bertilsson, K., 2019. Multi-objective pareto and GAs nonlinear optimization approach for flyback transformer. Electrical Engineering, 101(3), 995-1006.
  • 11. Ahmed, N.A., Madouh, J.Y., 2018. High-frequency full-bridge isolated DC–DC converter for fuel cell power generation systems. Electrical Engineering, 100(6), 1-13.
  • 12. Guillod, T., Krismer, F., Kolar, J.W., 2018. Magnetic equivalent circuit of MF transformers: modeling and parameter uncertainties. Electrical Engineering, 100, 2261-2275.
  • 13. Huang, P., Mao, C., Wang, D., 2017. Electric field simulations and analysis for high voltage high power medium frequency transformer. Energies, 10(3), 371.
  • 14. Olowu, T.O., Jafari, H., Moghaddami, M., Sarwat, A.I., 2019. Physics-based design optimization of high frequency transformers for solid state transformer applications. 2019 IEEE Industry Applications Society Annual Meeting, 1-6.
  • 15. Gradinger, T.B., Drofenik, U., Alvarez, S., 2017. Novel insulation concept for an MV dry-cast medium-frequency transformer. 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), 1-10.
  • 16. Kauder, T., Hameyer, K., 2017. Performance factor comparison of nanocrystalline, amorphous, and crystalline soft magnetic materials for medium-frequency applications. IEEE Transactions on Magnetics, 53(11), 1-4.
  • 17. Kiran, M.R., Farrok, O., Islam, M.R., Zhu, J., 2021. Increase in the power transfer capability of advanced magnetic material based high frequency transformer by using a novel distributed winding topology. IEEE Transactions on Industry Applications, 57(6), 6306-6317.
  • 18. Gao, Z., Zhang, J., Guo, F., Zhou, Y., Guan, R., Huang, Y., 2021. An improved high-voltage high-frequency multi-winding transformer structure for anode power supply in ECRH. Fusion Engineering and Design, 172, 112899.
  • 19. Nia, M.S.S., Saadatmand, S., Altimania, M., Shamsi, P., Ferdowsi, M., 2019. Analysis of skin effect in high frequency isolation transformers. 2019 North American Power Symposium (NAPS), 1-6.
  • 20. Islam, M.R., Rahman, M.A., Sarker, P.C., Muttaqi, K.M., Sutanto, D., 2019. Investigation of the magnetic response of a nanocrystalline high-frequency magnetic link with multi-input excitations. IEEE Transactions on Applied Superconductivity, 29(2), 1-5.
  • 21. Nia, M.S.S., Saadatmand, S., Altimania, M., Shamsi, P., Ferdowsi, M., 2019. Analysis of various transformer structures for high frequency isolation applications. 2019 North American Power Symposium (NAPS), 1-6.
  • 22. Zhao, B., Ouyang, Z., Andersen, M.A.E., Duffy, M.C., Hurley, W.G., 2017. An improved partially interleaved transformer structure for high-voltage high-frequency multiple-output applications. Proceedings of IEEE 43rd Annual Conference of IEEE Industrial Electronics, 798-804.
  • 23. Guo, S., Liu, P., Zhang, L., Huang, A.Q., 2017. Design and optimization of the high frequency transformer for a 800V/1.2 MHz SiC LLC resonant converter. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 5317-5323.
  • 24. Mogorovic, M., Dujic, D., 2018. Sensitivity analysis of medium-frequency transformer designs for solid-state transformers. IEEE Transactions on Power Electronics, 34(9), 8356-8367.
  • 25. Chen, T., Zhao, Z., Shen, Z., Jia, H., Ji, J., Wang, H., 2024. Litz-wire winding loss calculation method for optimal design of high-frequency transformers. IEEE Journal of Emerging and Selected Topics in Power Electronics, 12(2), 2027-2040.
  • 26. Rajput, N., Sandhibigraha, H.B., Mahadeva Iyer, V., 2024. Analysis and design trade-offs of a multi-winding high-frequency transformer for a battery charger. 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), 854-860.
  • 27. Nasirpour, F., Heidary, A., Niasar, M.G., Lekić, A., Popov, M., 2023. High-frequency transformer winding model with adequate protection. Electric Power Systems Research, 223, 109637.
  • 28. Colonel, W.T., 2011. Transformer and inductor design handbook. 4th ed; CRC Press: Boca Raton, FL, USA.

Anahtarlamalı Güç Dönüştürücüleri için Yüksek Frekanslı İzolasyon Transformatörünün Optimum Tasarımı ve Analizi

Yıl 2024, , 585 - 598, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1559912

Öz

Yüksek frekanslı (YF) transformatörler yarı iletken güç anahtarlarında düşük çekirdek kaybına sahip güçlü yumuşak manyetik malzemelerin ortaya çıkması nedeniyle son yıllarda büyük ilgi görmektedir. Ayrıca YF transformatörünün optimal tasarımı, yüksek performanslı enerji dönüşüm sistemleri için önemli bir konudur. Bu makalede, 40W 50/12.5/25 V tek girişli ve iki çıkışlı süreksiz iletim modlu (SİM) bir geri dönüş transformatörü matematiksel hesaplamalar kullanılarak tasarlanmış ve elektromanyetik ve kayıp analizini içeren 3B ANSYS/Maxwell simülasyonu ile analiz edilmiştir. Histerezis kayıplarını, girdap akımlarını, bakır kayıplarını ve manyetik akı yoğunluğunu hesaba katan simülasyon sonuçlarının matematiksel model hesaplamasının doğruluğunu belirlediği göstermektedir. Analizler 100 kHz frekans seviyelerinde gerçekleştirilir. Elde edilen sonuçlar çekirdek manyetik akı yoğunluğunu, çekirdek/bakır kayıplarını, sızıntı/mıknatıslama endüktanslarını, sargıların parazit kapasitanslarını, giriş/çıkış voltajını, akım değerlerini ve tüm tasarım parametrelerini içerecektir. Son olarak önerilen YF transformatörünün genel verimliliği hesaplanmış ve sunulmuştur. YF transformatörünün, transformatörün çekirdek ve bobin seçimi, B-H ve B-P özellikleri, birebir boyut tasarımı ve ağ çalışması sayesinde %97,8 verim elde etmesi dikkate değerdir. Tasarlanan transformatörün dinamik ve matematiksel sonuçları, tasarım ve verimlilik başarısını ortaya koymaktadır.

Kaynakça

  • 1. Elrajoubi, A.M., Ang, S.S., 2019. High-frequency transformer review and design for low-power solid-state transformer topology. 2019 IEEE Texas Power and Energy Conference (TPEC), 1-6.
  • 2. Ding, H., Zhao, W., Li, M., Zhang, L., Sun, Y., 2023. Electromagnetic vibration characteristics of high-frequency transformer under DC bias with different winding structures. Processes, 11(4), 1185.
  • 3. Yao, W., Lu, J., Taghizadeh, F., Bai, F., Seagar, A., 2023. Integration of SiC devices and high-frequency transformer for high-power renewable energy applications. Energies, 16(3), 1538.
  • 4. Mukherjee, S., Barbosa, P., 2023. Design and optimization of an integrated resonant inductor with high-frequency transformer for wide gain range DC–DC resonant converters in electric vehicle charging applications. IEEE Transactions on Power Electronics, 38(5), 6380-6394.
  • 5. Li, Z., Hsieh, E., Li, Q., Lee, F., 2023. High-frequency transformer design with medium-voltage insulation for resonant converter in solid-state transformer. IEEE Transactions on Power Electronics, 38(8), 9917-9932
  • 6. Olowu, T.O., Jafari, H., Moghaddami, M., Sarwat, A.I., 2020. Multiphysics and multiobjective design optimization of high-frequency transformers for solid-state transformer applications. IEEE Transactions on Industry Applications, 57(1), 1014-1023.
  • 7. Li, Z., Hsieh, Y.H., Li, Q., Lee, F.C., Ahmed, M.H., 2020. High-frequency transformer design with high-voltage insulation for modular power conversion from medium-voltage AC to 400-V DC. 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 5053-5060.
  • 8. Dang, Y., Zhu, L., Liu, J., Zhan, C., Long, L., Ji, S., 2022. Module integral method for the calculation of frequency-dependent leakage inductance of high-frequency transformers. IEEE Transactions on Power Electronics, 37(6), 7028-7038.
  • 9. Rahman, S,, Candan, M.Y., Tamyurek, B., Aydin, E., Meşe, H., Aydemir, M.T., 2022. Design and implementation of a 10 kV/10 kW high-frequency center-tapped transformer. Electrical Engineering, 1-17.
  • 10. Barg, S., Bertilsson, K., 2019. Multi-objective pareto and GAs nonlinear optimization approach for flyback transformer. Electrical Engineering, 101(3), 995-1006.
  • 11. Ahmed, N.A., Madouh, J.Y., 2018. High-frequency full-bridge isolated DC–DC converter for fuel cell power generation systems. Electrical Engineering, 100(6), 1-13.
  • 12. Guillod, T., Krismer, F., Kolar, J.W., 2018. Magnetic equivalent circuit of MF transformers: modeling and parameter uncertainties. Electrical Engineering, 100, 2261-2275.
  • 13. Huang, P., Mao, C., Wang, D., 2017. Electric field simulations and analysis for high voltage high power medium frequency transformer. Energies, 10(3), 371.
  • 14. Olowu, T.O., Jafari, H., Moghaddami, M., Sarwat, A.I., 2019. Physics-based design optimization of high frequency transformers for solid state transformer applications. 2019 IEEE Industry Applications Society Annual Meeting, 1-6.
  • 15. Gradinger, T.B., Drofenik, U., Alvarez, S., 2017. Novel insulation concept for an MV dry-cast medium-frequency transformer. 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), 1-10.
  • 16. Kauder, T., Hameyer, K., 2017. Performance factor comparison of nanocrystalline, amorphous, and crystalline soft magnetic materials for medium-frequency applications. IEEE Transactions on Magnetics, 53(11), 1-4.
  • 17. Kiran, M.R., Farrok, O., Islam, M.R., Zhu, J., 2021. Increase in the power transfer capability of advanced magnetic material based high frequency transformer by using a novel distributed winding topology. IEEE Transactions on Industry Applications, 57(6), 6306-6317.
  • 18. Gao, Z., Zhang, J., Guo, F., Zhou, Y., Guan, R., Huang, Y., 2021. An improved high-voltage high-frequency multi-winding transformer structure for anode power supply in ECRH. Fusion Engineering and Design, 172, 112899.
  • 19. Nia, M.S.S., Saadatmand, S., Altimania, M., Shamsi, P., Ferdowsi, M., 2019. Analysis of skin effect in high frequency isolation transformers. 2019 North American Power Symposium (NAPS), 1-6.
  • 20. Islam, M.R., Rahman, M.A., Sarker, P.C., Muttaqi, K.M., Sutanto, D., 2019. Investigation of the magnetic response of a nanocrystalline high-frequency magnetic link with multi-input excitations. IEEE Transactions on Applied Superconductivity, 29(2), 1-5.
  • 21. Nia, M.S.S., Saadatmand, S., Altimania, M., Shamsi, P., Ferdowsi, M., 2019. Analysis of various transformer structures for high frequency isolation applications. 2019 North American Power Symposium (NAPS), 1-6.
  • 22. Zhao, B., Ouyang, Z., Andersen, M.A.E., Duffy, M.C., Hurley, W.G., 2017. An improved partially interleaved transformer structure for high-voltage high-frequency multiple-output applications. Proceedings of IEEE 43rd Annual Conference of IEEE Industrial Electronics, 798-804.
  • 23. Guo, S., Liu, P., Zhang, L., Huang, A.Q., 2017. Design and optimization of the high frequency transformer for a 800V/1.2 MHz SiC LLC resonant converter. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 5317-5323.
  • 24. Mogorovic, M., Dujic, D., 2018. Sensitivity analysis of medium-frequency transformer designs for solid-state transformers. IEEE Transactions on Power Electronics, 34(9), 8356-8367.
  • 25. Chen, T., Zhao, Z., Shen, Z., Jia, H., Ji, J., Wang, H., 2024. Litz-wire winding loss calculation method for optimal design of high-frequency transformers. IEEE Journal of Emerging and Selected Topics in Power Electronics, 12(2), 2027-2040.
  • 26. Rajput, N., Sandhibigraha, H.B., Mahadeva Iyer, V., 2024. Analysis and design trade-offs of a multi-winding high-frequency transformer for a battery charger. 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), 854-860.
  • 27. Nasirpour, F., Heidary, A., Niasar, M.G., Lekić, A., Popov, M., 2023. High-frequency transformer winding model with adequate protection. Electric Power Systems Research, 223, 109637.
  • 28. Colonel, W.T., 2011. Transformer and inductor design handbook. 4th ed; CRC Press: Boca Raton, FL, USA.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Makineleri ve Sürücüler, Elektrik Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Abdurrahman Yavuzdeğer 0000-0001-8058-4672

Burak Esenboğa 0000-0002-7777-259X

Tuğçe Demirdelen 0000-0002-1602-7262

Yayımlanma Tarihi 3 Ekim 2024
Gönderilme Tarihi 21 Şubat 2024
Kabul Tarihi 27 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yavuzdeğer, A., Esenboğa, B., & Demirdelen, T. (2024). Optimal Design and Analysis of High-Frequency Isolation Transformer for Switched-Mode Power Converters. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 585-598. https://doi.org/10.21605/cukurovaumfd.1559912