Araştırma Makalesi
BibTex RIS Kaynak Göster

Low Carbon St52 Steel Electromagnetic Shieldıng Potential: 4900-6000 MHz Frequency Range Performance Analysis

Yıl 2024, , 839 - 848, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560477

Öz

With the widespread use of electromagnetic fields in all areas of life, electromagnetic shielding has become an increasingly important discipline. With the multidisciplinary research direction that brings together various disciplines such as engineering, physics and materials science, and rapidly developing technologies, electromagnetic shielding continues to be of critical importance for the safety of electronic devices and systems. This paper evaluates the electromagnetic shielding potential of low carbon ST52 steel in the frequency range of 4900-6000 MHz. ST52 steel is widely used in various applications. The study aimed to investigate whether ST52 steel is a viable option for electromagnetic shielding, given its accessibility and cost-effectiveness compared to other materials. Results showed that ST52 steel is effective in shielding electromagnetic waves, with a range of 40-60 dB in the 4900-6000 MHz frequency range, meeting the 40 dB criterion set by ASTM regulations. Results showed that ST52 steel is effective in shielding electromagnetic waves, with a range of 40-60 dB in the 4900-6000 MHz frequency range, meeting the 40 dB criterion set by ASTM regulations. Results showed that ST52 steel is effective in shielding electromagnetic waves, with a range of 40-60 dB in the 4900-6000 MHz frequency range, meeting the 40 dB criterion set by ASTM regulations. The study demonstrates that ST52 steel performs exceptionally well across a broad frequency range, which distinguishes it from other materials. This is particularly evident in the 4900-6000 MHz frequency range, where ST52 steel exhibits superior electromagnetic shielding potential compared to other materials. The study's insights are valuable for professionals seeking dependable electromagnetic shielding solutions in sectors such as telecommunications, defense, and electronics manufacturing.

Kaynakça

  • 1. Ertekin, Z., Secmen, M., Erol, M., 2023. Electromagnetic shielding effectiveness and microwave properties of expanded graphite-ionic liquid co-doped PVDF. Journal of Materials Science: Materials in Electronics, 34(1), 43.
  • 2. Kim, K., Lee, Y.S., Kim, N., Choi, H.D., Kang, D.J., Kim, H.R., Lim, K.M., 2021. Effects of electromagnetic waves with LTE and 5G bandwidth on the skin pigmentation in vitro. International Journal of Molecular Sciences, 22(1), 170.
  • 3. Bushberg, J.T., Chou, C.K., Foster, K.R., Kavet, R., Maxson, D.P., Tell, R.A., Ziskin, M.C. 2020. IEEE committee on man and radiation-COMAR technical information statement: health and safety issues concerning exposure of the general public to electromagnetic energy from 5G wireless communications networks. Health Physics, 119(2), 236-246.
  • 4. Mathur, P., Raman, S., 2020. Electromagnetic interference (EMI): measurement and reduction techniques. Journal of Electronic Materials, 49, 2975-2998.
  • 5. Zhan, Y., Wang, J., Zhang, K., Li, Y., Meng, Y., Yan, N., Xia, H., 2018. Fabrication of a flexible electromagnetic interference shielding Fe3O4@ reduced graphene oxide/natural rubber composite with segregated network. Chemical Engineering Journal, 344, 184-193.
  • 6. Bi, S., Zhang, L., Mu, C., Liu, M., Hu, X., 2017. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels. Applied Surface Science, 412, 529-536.
  • 7. Thomassin, J.M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C., 2013. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports, 74(7), 211-232.
  • 8. Wu, N., Hu, Q., Wei, R., Mai, X., Naik, N., Pan, D., Shi, Z., 2021. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon, 176, 88-105.
  • 9. Wang, G., Zhao, G., Wang, S., Zhang, L., Park, C.B., 2018. Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. Journal of Materials Chemistry C, 6(25), 6847-6859.
  • 10. Lakshmi, K., John, H., Mathew, K.T., Joseph, R., George, K.E., 2009. Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Materialia, 57(2), 371-375.
  • 11. Abbasi, H., Antunes, M., Velasco, J.I., 2019. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 103, 319-373.
  • 12. Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-Warthan, A.A., Tremel, W., 2015. Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 3(37), 18753-18808.
  • 13. Zhang, X., Zhang, S., Tang, Y., Huang, X., Pang, H., 2022. Recent advances and challenges of metal-organic framework/graphene-based composites. Composites Part B: Engineering, 230, 109532.
  • 14. Ren, Y., Wang, X., Ma, J., Zheng, Q., Wang, L., Jiang, W., 2023. Metal-organic framework derived carbon based composites for electromagnetic wave absorption: dimension design and morphology regulation. Journal of Materials Science & Technology, 132, 223-251.
  • 15. Kruželák, J., Kvasničáková, A., Hložeková, K., Hudec, I., 2021. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advances, 3(1), 123-172.
  • 16. Sharma, S., Sudhakara, P., Omran, A.A.B., Singh, J., Ilyas, R.A., 2021. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers, 13(17), 2898.
  • 17. Sorgucu, U., 2024. Enhancing the electromagnetic shielding effectiveness of alumina (AL2O4) by coating with nano gold (AuNp). Optical Materials, 148, 114795.
  • 18. Sorgucu, U., Kariper, I.A., 2024. Shielding performance of nano palladium-coated stainless steels against electromagnetic interference in 5G networks. Waves in Random and Complex Media, 1-19
  • 19. Hou, X., Feng, X.R., Jiang, K., Zheng, Y.C., Liu, J.T., Wang, M., 2024. Recent progress in smart electromagnetic interference shielding materials. Journal of Materials Science & Technology, 186, 256-271.
  • 20. Piersanti, S., Orlandi, A., de Paulis, F., 2018. Electromagnetic absorbing materials design by optimization using a machine learning approach. IEEE Transactions on Electromagnetic Compatibility, 1-8.
  • 21. Liu, C., Wang, L., Liu, S., Tong, L., Liu, X., 2020. Fabrication strategies of polymer-based electromagnetic interference shielding materials. Advanced Industrial and Engineering Polymer Research, 3(4), 149-159.
  • 22. Gülmez, N., Koçkal, N.U., Özen, Ş., Ateş, K., 2022. Corrosion potential and electromagnetic shielding effectiveness of geopolymer tiles produced with waste metal particles. Sādhanā, 47(3), 115.
  • 23. Lv, H., Yang, Z., Pan, H., Wu, R., 2022. Electromagnetic absorption materials: current progress and new frontiers. Progress in Materials Science, 127, 100946.
  • 24. Döner, D., İçier, F., 2018. Gıdaların elektriksel yöntemlerle işlenmesinde uygulanan farklı frekans ve dalga şekillerinin proses etkinliği üzerine etkisi. Akademik Gıda, 16(4), 470-482.
  • 25. Kimmel, W.D., Gerke, D., 2018. Electromagnetic compatibility in medical equipment: a guide for designers and installers. CRC Press, 46(3), 276-288.
  • 26. Wanasinghe, D., Aslani, F., 2019. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering, 176, 107207.
  • 27. Di Fraia, S., Marracci, M., Tellini, B., Zappacosta, C., 2008. Shielding effectiveness measurements for ferromagnetic shields. IEEE Transactions on Instrumentation and Measurement, 58(1), 115-121.
  • 28. Wang, M., Tang, X.H., Cai, J.H., Wu, H., Shen, J.B., Guo, S.Y., 2021. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon, 177, 377-402.
  • 29. Fox, R.T., Wani, V., Howard, K.E., Bogle, A., Kempel, L., 2008. Conductive polymer composite materials and their utility in electromagnetic shielding applications. Journal of Applied Polymer Science, 107(4), 2558-2566.
  • 30. Palanisamy, S., Tunakova, V., Militky, J., 2018. Fiber-based structures for electromagnetic shielding-comparison of different materials and textile structures. Textile Research Journal, 88(17), 1992-2012.
  • 31. Rayar, A., Naveen, C.S., Onkarappa, H.S., Betageri, V.S., Prasanna, G.D., 2023. EMI shielding applications of PANI-Ferrite nanocomposite materials: a review. Synthetic Metals, 295, 117338.
  • 32. Shi, S.L., Liang, J., 2008. The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites. Nanotechnology, 19(25), 255707.
  • 33. Kumari, P., Tripathi, P., Singh, S.P., Kumar, D., 2020. Electromagnetic shielding using ceramic materials. In Materials For Potential Emi Shielding Applications, 315-331, Elsevier.
  • 34. Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G., 2018. Microstructure and mechanical properties of friction-stir welded St52 steel joints. International Journal of Minerals, Metallurgy, and Materials, 25, 1457-1464.
  • 35. Aydın, Ş.I.K., 2006. Yapı çeliğinin (St52-3) Mig/Mag kaynağında gaz karışımlarının çekme dayanımı özelliklerine etkisi. Trakya Univ J Sci, 7(1), 9-15.
  • 36. Park, H.H., 2022. Electromagnetic shielding analysis of planar materials using ASTM D4935 standard fixture. IEEE Transactions on Electromagnetic Compatibility, 64(5), 1767-1778.
  • 37. Sorgucu, U., 2023. Electromagnetic interference (EMI) shielding effectiveness (SE) of pure aluminum: an experimental assessment for 5G (SUB 6GHZ). Journal of Material Science: Materials in Electronics, 34(2325), 1-15.
  • 38. https://www.ainfoinc.us/159wcas-right-angle-rectangular-waveguide-to-coaxial-adapter-4-9-7-05-ghz-wr159-to-sma-female-fdp58-udr58, Erişim tarihi: 18/09/2024
  • 39. Yang, Y., Wang, J., Liu, Z., Wang, Z., 2021. A new study on the influencing factors and mechanism of shielding effectiveness of woven fabrics containing stainless steel fibers. Journal of Industrial Textiles. 50(6), 830-846.
  • 40. Alım, B., Şakar, E., Baltakesmez, A., Han, İ., Sayyed, M.I., Demir, L., 2020. Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiation Physics and Chemistry. 166, 108455.
  • 41. Kim, S., Jang, Y.S., Oh, T., Lee, S.K., Yoo, D.Y., 2022. Effect of crack width on electromagnetic interference shielding effectiveness of high-performance cementitious composites containing steel and carbon fibers. Journal of Materials Research and Technology. 20, 359-372.
  • 42. Mikinka, E., Siwak, M., 2021. Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites-a topical review. Journal of Materials Science: Materials in Electronics. 32(20), 24585-24643.
  • 43. Pandey, R., Tekumalla, S., Gupta, M., 2020. EMI shielding of metals, alloys, and composites. In Materials for Potential EMI Shielding Applications, 341-355, Elsevier.
  • 44. Mostafavi Yazdi, S.J., Lisitski, A., Pack, S., Hiziroglu, H.R., Baqersad, J., 2023. Analysis of shielding effectiveness against electromagnetic interference (EMI) for metal-coated polymeric materials. Polymers. 15(8), 1911.
  • 45. Jiao, C., Xu, Y., Li, X., Zhang, X., Zhao, Z., Pang, C., 2021. Electromagnetic shielding techniques in the wireless power transfer system for charging inspection robot application. International Journal of Antennas and Propagation, 9984595
  • 46. Adamczyk, B., 2023. Principles of electromagnetic compatibility: Laboratory Exercises and Lectures Wiley-IEEE Press, 592.
  • 47. Sorgucu, U., 2024. Enhancing the electromagnetic shielding effectiveness of alumina (AL2O4) by coating with nano gold (AuNp). Opt Mater (Amst), 148(2024), 114795.
  • 48. Martinez, P.A., Victoria, J., Torres, J., Suarez, A., Alcarria, A., Amaro, A., Galindo-Galiana, B., Losada-Fernandez, C., Ramirez-Monsell, V., Lopez-Ruis, B., 2021. Analysis of EMI shielding efectiveness for plastic fiber composites in the 5G sub-6 GHz band. 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh, NC, USA, 278-283.

Düşük Karbonlu St52 Çeliğinin Elektromanyetik Kalkanlama Potansiyeli: 4900-6000 MHz Frekans Aralığında Performans İncelemesi

Yıl 2024, , 839 - 848, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560477

Öz

Elektromanyetik alanların hayatın her alanında yaygınlaşmasıyla elektromanyetik kalkanlama da önemi artan bir disiplin olmuştur. Mühendislik, fizik ve malzeme bilimi gibi çeşitli disiplinleri bir araya getiren çok disiplinli araştırma yönüyle ve hızla gelişen teknolojilerle birlikte elektromanyetik kalkanlama, elektronik cihazların ve sistemlerin güvenliği için kritik bir öneme sahip olmaya devam etmektedir. Bu makale kapsamında, çok geniş bir kullanım sahasına sahip olan düşük karbonlu ST52 çeliğinin elektromanyetik kalkanlama potansiyeli 4900-6000 MHz frekans aralığında değerlendirmektedir. ST52 çeliğinin kolay erişilebilir ve birçok emsaline göre fiyat/performans avantajları sebebiyle, elektromanyetik kalkanlama açısından kullanılabileceği sorusuyla başlayan bu çalışma sonucunda, ST52 çeliğinin 4900-6000 MHz frekans aralığında 40-60 dB arasında etkili bir elektromanyetik kalkanlama performansına sahip olduğu görülmüştür. Bu değerler, ASTM düzenlemeleri tarafından belirlenen 40 dB'lik elektromanyetik kalkanlama kriterini başarıyla karşılamaktadır. Elde edilen bulgular, literatürdeki benzer çalışmalardan farklı olarak ST52 çeliğinin geniş bir frekans aralığında güçlü bir performans sergilediğini göstermektedir. ST52 çeliğinin elektromanyetik kalkanlama potansiyeli, özellikle 4900-6000 MHz frekans aralığında diğer malzemelerden ayrışmaktadır. Bu çalışmadan elde edilen bilgiler, telekomünikasyon, savunma sanayi ve elektronik üretimi gibi sektörlerde güvenilir elektromanyetik kalkanlama çözümleri arayan profesyoneller için önemlidir.

Kaynakça

  • 1. Ertekin, Z., Secmen, M., Erol, M., 2023. Electromagnetic shielding effectiveness and microwave properties of expanded graphite-ionic liquid co-doped PVDF. Journal of Materials Science: Materials in Electronics, 34(1), 43.
  • 2. Kim, K., Lee, Y.S., Kim, N., Choi, H.D., Kang, D.J., Kim, H.R., Lim, K.M., 2021. Effects of electromagnetic waves with LTE and 5G bandwidth on the skin pigmentation in vitro. International Journal of Molecular Sciences, 22(1), 170.
  • 3. Bushberg, J.T., Chou, C.K., Foster, K.R., Kavet, R., Maxson, D.P., Tell, R.A., Ziskin, M.C. 2020. IEEE committee on man and radiation-COMAR technical information statement: health and safety issues concerning exposure of the general public to electromagnetic energy from 5G wireless communications networks. Health Physics, 119(2), 236-246.
  • 4. Mathur, P., Raman, S., 2020. Electromagnetic interference (EMI): measurement and reduction techniques. Journal of Electronic Materials, 49, 2975-2998.
  • 5. Zhan, Y., Wang, J., Zhang, K., Li, Y., Meng, Y., Yan, N., Xia, H., 2018. Fabrication of a flexible electromagnetic interference shielding Fe3O4@ reduced graphene oxide/natural rubber composite with segregated network. Chemical Engineering Journal, 344, 184-193.
  • 6. Bi, S., Zhang, L., Mu, C., Liu, M., Hu, X., 2017. Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels. Applied Surface Science, 412, 529-536.
  • 7. Thomassin, J.M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., Detrembleur, C., 2013. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports, 74(7), 211-232.
  • 8. Wu, N., Hu, Q., Wei, R., Mai, X., Naik, N., Pan, D., Shi, Z., 2021. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon, 176, 88-105.
  • 9. Wang, G., Zhao, G., Wang, S., Zhang, L., Park, C.B., 2018. Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. Journal of Materials Chemistry C, 6(25), 6847-6859.
  • 10. Lakshmi, K., John, H., Mathew, K.T., Joseph, R., George, K.E., 2009. Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Materialia, 57(2), 371-375.
  • 11. Abbasi, H., Antunes, M., Velasco, J.I., 2019. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 103, 319-373.
  • 12. Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-Warthan, A.A., Tremel, W., 2015. Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 3(37), 18753-18808.
  • 13. Zhang, X., Zhang, S., Tang, Y., Huang, X., Pang, H., 2022. Recent advances and challenges of metal-organic framework/graphene-based composites. Composites Part B: Engineering, 230, 109532.
  • 14. Ren, Y., Wang, X., Ma, J., Zheng, Q., Wang, L., Jiang, W., 2023. Metal-organic framework derived carbon based composites for electromagnetic wave absorption: dimension design and morphology regulation. Journal of Materials Science & Technology, 132, 223-251.
  • 15. Kruželák, J., Kvasničáková, A., Hložeková, K., Hudec, I., 2021. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advances, 3(1), 123-172.
  • 16. Sharma, S., Sudhakara, P., Omran, A.A.B., Singh, J., Ilyas, R.A., 2021. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymers, 13(17), 2898.
  • 17. Sorgucu, U., 2024. Enhancing the electromagnetic shielding effectiveness of alumina (AL2O4) by coating with nano gold (AuNp). Optical Materials, 148, 114795.
  • 18. Sorgucu, U., Kariper, I.A., 2024. Shielding performance of nano palladium-coated stainless steels against electromagnetic interference in 5G networks. Waves in Random and Complex Media, 1-19
  • 19. Hou, X., Feng, X.R., Jiang, K., Zheng, Y.C., Liu, J.T., Wang, M., 2024. Recent progress in smart electromagnetic interference shielding materials. Journal of Materials Science & Technology, 186, 256-271.
  • 20. Piersanti, S., Orlandi, A., de Paulis, F., 2018. Electromagnetic absorbing materials design by optimization using a machine learning approach. IEEE Transactions on Electromagnetic Compatibility, 1-8.
  • 21. Liu, C., Wang, L., Liu, S., Tong, L., Liu, X., 2020. Fabrication strategies of polymer-based electromagnetic interference shielding materials. Advanced Industrial and Engineering Polymer Research, 3(4), 149-159.
  • 22. Gülmez, N., Koçkal, N.U., Özen, Ş., Ateş, K., 2022. Corrosion potential and electromagnetic shielding effectiveness of geopolymer tiles produced with waste metal particles. Sādhanā, 47(3), 115.
  • 23. Lv, H., Yang, Z., Pan, H., Wu, R., 2022. Electromagnetic absorption materials: current progress and new frontiers. Progress in Materials Science, 127, 100946.
  • 24. Döner, D., İçier, F., 2018. Gıdaların elektriksel yöntemlerle işlenmesinde uygulanan farklı frekans ve dalga şekillerinin proses etkinliği üzerine etkisi. Akademik Gıda, 16(4), 470-482.
  • 25. Kimmel, W.D., Gerke, D., 2018. Electromagnetic compatibility in medical equipment: a guide for designers and installers. CRC Press, 46(3), 276-288.
  • 26. Wanasinghe, D., Aslani, F., 2019. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Composites Part B: Engineering, 176, 107207.
  • 27. Di Fraia, S., Marracci, M., Tellini, B., Zappacosta, C., 2008. Shielding effectiveness measurements for ferromagnetic shields. IEEE Transactions on Instrumentation and Measurement, 58(1), 115-121.
  • 28. Wang, M., Tang, X.H., Cai, J.H., Wu, H., Shen, J.B., Guo, S.Y., 2021. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon, 177, 377-402.
  • 29. Fox, R.T., Wani, V., Howard, K.E., Bogle, A., Kempel, L., 2008. Conductive polymer composite materials and their utility in electromagnetic shielding applications. Journal of Applied Polymer Science, 107(4), 2558-2566.
  • 30. Palanisamy, S., Tunakova, V., Militky, J., 2018. Fiber-based structures for electromagnetic shielding-comparison of different materials and textile structures. Textile Research Journal, 88(17), 1992-2012.
  • 31. Rayar, A., Naveen, C.S., Onkarappa, H.S., Betageri, V.S., Prasanna, G.D., 2023. EMI shielding applications of PANI-Ferrite nanocomposite materials: a review. Synthetic Metals, 295, 117338.
  • 32. Shi, S.L., Liang, J., 2008. The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites. Nanotechnology, 19(25), 255707.
  • 33. Kumari, P., Tripathi, P., Singh, S.P., Kumar, D., 2020. Electromagnetic shielding using ceramic materials. In Materials For Potential Emi Shielding Applications, 315-331, Elsevier.
  • 34. Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G., Çam, G., 2018. Microstructure and mechanical properties of friction-stir welded St52 steel joints. International Journal of Minerals, Metallurgy, and Materials, 25, 1457-1464.
  • 35. Aydın, Ş.I.K., 2006. Yapı çeliğinin (St52-3) Mig/Mag kaynağında gaz karışımlarının çekme dayanımı özelliklerine etkisi. Trakya Univ J Sci, 7(1), 9-15.
  • 36. Park, H.H., 2022. Electromagnetic shielding analysis of planar materials using ASTM D4935 standard fixture. IEEE Transactions on Electromagnetic Compatibility, 64(5), 1767-1778.
  • 37. Sorgucu, U., 2023. Electromagnetic interference (EMI) shielding effectiveness (SE) of pure aluminum: an experimental assessment for 5G (SUB 6GHZ). Journal of Material Science: Materials in Electronics, 34(2325), 1-15.
  • 38. https://www.ainfoinc.us/159wcas-right-angle-rectangular-waveguide-to-coaxial-adapter-4-9-7-05-ghz-wr159-to-sma-female-fdp58-udr58, Erişim tarihi: 18/09/2024
  • 39. Yang, Y., Wang, J., Liu, Z., Wang, Z., 2021. A new study on the influencing factors and mechanism of shielding effectiveness of woven fabrics containing stainless steel fibers. Journal of Industrial Textiles. 50(6), 830-846.
  • 40. Alım, B., Şakar, E., Baltakesmez, A., Han, İ., Sayyed, M.I., Demir, L., 2020. Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiation Physics and Chemistry. 166, 108455.
  • 41. Kim, S., Jang, Y.S., Oh, T., Lee, S.K., Yoo, D.Y., 2022. Effect of crack width on electromagnetic interference shielding effectiveness of high-performance cementitious composites containing steel and carbon fibers. Journal of Materials Research and Technology. 20, 359-372.
  • 42. Mikinka, E., Siwak, M., 2021. Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites-a topical review. Journal of Materials Science: Materials in Electronics. 32(20), 24585-24643.
  • 43. Pandey, R., Tekumalla, S., Gupta, M., 2020. EMI shielding of metals, alloys, and composites. In Materials for Potential EMI Shielding Applications, 341-355, Elsevier.
  • 44. Mostafavi Yazdi, S.J., Lisitski, A., Pack, S., Hiziroglu, H.R., Baqersad, J., 2023. Analysis of shielding effectiveness against electromagnetic interference (EMI) for metal-coated polymeric materials. Polymers. 15(8), 1911.
  • 45. Jiao, C., Xu, Y., Li, X., Zhang, X., Zhao, Z., Pang, C., 2021. Electromagnetic shielding techniques in the wireless power transfer system for charging inspection robot application. International Journal of Antennas and Propagation, 9984595
  • 46. Adamczyk, B., 2023. Principles of electromagnetic compatibility: Laboratory Exercises and Lectures Wiley-IEEE Press, 592.
  • 47. Sorgucu, U., 2024. Enhancing the electromagnetic shielding effectiveness of alumina (AL2O4) by coating with nano gold (AuNp). Opt Mater (Amst), 148(2024), 114795.
  • 48. Martinez, P.A., Victoria, J., Torres, J., Suarez, A., Alcarria, A., Amaro, A., Galindo-Galiana, B., Losada-Fernandez, C., Ramirez-Monsell, V., Lopez-Ruis, B., 2021. Analysis of EMI shielding efectiveness for plastic fiber composites in the 5G sub-6 GHz band. 2021 IEEE International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh, NC, USA, 278-283.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik Elektromanyetiği
Bölüm Makaleler
Yazarlar

Uğur Sorgucu 0000-0001-9227-1526

Yayımlanma Tarihi 3 Ekim 2024
Gönderilme Tarihi 6 Mart 2024
Kabul Tarihi 27 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sorgucu, U. (2024). Düşük Karbonlu St52 Çeliğinin Elektromanyetik Kalkanlama Potansiyeli: 4900-6000 MHz Frekans Aralığında Performans İncelemesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 839-848. https://doi.org/10.21605/cukurovaumfd.1560477