Araştırma Makalesi
BibTex RIS Kaynak Göster

45° Eğimli İkincil Jetlere Sahip Sınırlandırılmamış ve Sınırlandırılmış Çarpan Jet Dizilerinde Isı Transferi Karakteristiklerinin Deneysel İncelenmesi

Yıl 2024, , 923 - 937, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1605970

Öz

Bu çalışmada, 45° eğimli ikincil jetlere sahip sınırlandırılmamış ve sınırlandırılmış çarpan dizi jet akışlarında çarpma yüzeyindeki ısı transferi etkileri deneysel olarak incelenmiştir. Sınırlandırılmamış ve sınırlandırılmış jet akış alanlarında, Reynolds sayısının 20000 ve 30000 değerleri ve lüle-levha/levhalar arası açıklığın 0,5, 1, 3 ve 6 değerleri için çarpma levhasının orta ekseni boyunca termal kamera ile sıcaklık dağılımları elde edilmiştir. Elde edilen sıcaklık dağılımlarından, Reynolds sayısının, lüle-levha/levhalar arası açıklığın ve sınırlayıcı levha varlığının çarpma levhası üzerindeki Nusselt dağılımlarına etkisi araştırılmıştır. Hem sınırlandırılmamış hem de sınırlandırılmış durumda, çarpma levhası üzerindeki Nusselt değerleri artan Reynolds sayısı ile artmakta, artan lüle-levha/levhalar arası açıklıkla azalmaktadır. Çarpma levhası üzerinde birincil lüle ekseni doğrultusundaki durma noktasında ve ikincil jetlerin eksenleri doğrultusundaki çarpma levhası konumlarında yerel Nusselt sayısı pik değerler almaktadır. Çarpma levhası üzerinde oluşan pikler, Reynolds sayısı arttıkça daha keskin hale gelmektedir. İkincil jetlerin çarpma levhası üzerinde oluşturdukları piklerin konumları artan lüle-levha/levhalar arası açıklı ile daha büyük ±r/D değerlerine kaymaktadır. Akış alanlarında sınırlayıcı levhanın varlığı, çarpma levhası üzerindeki Nusselt değerlerini azaltmaktadır.

Kaynakça

  • 1. Tanaka, E., 1974. The interference of two dimensional parallel jets experiments on the combined flow of dual jets. Bulletin of JSME, 17(109), 920-927.
  • 2. Siclari, M.J., Hill, W.G., Jenkins, R.C., 1981. Stagnation line and upwash formation of two impinging jets. AIAA Journal, 19(10), 1286-1293.
  • 3. Mikhail S., Morces S.M., Abou-Ellail M.M.M., Ghaly, W.S., 1982). Numerical prediction of flow field and heat transfer from a row of laminar slot jets impinging on a flat plate. International Heat Transfer Conference 7, 377-382.
  • 4. Saad, N.R., Polat, S., Douglas, W.J.M., 1992. Confined multiple impinging slot jets without crossflow effects. International Journal of Heat and Fluid Flow, 13(1), 2-14.
  • 5. Barata, J.M.M., 1996. Fountain flows produced by multiple impinging jets in a crossflow. AIAA Journal, 34(12), 2523-2530.
  • 6. Rady, M., Arquis, E., 2006. Heat transfer enhancement of multiple impinging slot jets with symmetric exhaust ports and confinement surface protrusions. Applied Thermal Engineering, 26(11), 1310-1319.
  • 7. Dong, L.L., Leung, C.W., Cheung, C.S., 2004. Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets. International Journal of Heat and Mass Transfer, 47(3), 489-500.
  • 8. Abdel-Fattah, A., 2007. Numerical and experimental study of turbulent impinging twin-jet flow. Experimental Thermal and Fluid Science, 31(8), 1061-1072.
  • 9. Ozmen, Y., 2011. Confined impinging twin air jets at high Reynolds numbers. Experimental Thermal and Fluid Science, 35(2), 355-363.
  • 10. Koched, A., Pavageau, M., Aloui, F., 2012. Vortex structure in the wall region of an impinging plane jet. Journal of Applied Fluid Mechanics, 4(2), 61-69.
  • 11. Al Mubarak, A.A., Shaahid, S.M., Al-Hadhrami, L.M., 2013. Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets. Thermal Science, 17(4), 1195-1206.
  • 12. Buchlin, J.M., 2011. Convective heat transfer in impinging-gas-jet arrangements. Journal of Applied Fluid Mechanics, 4(2), 137-149.
  • 13. Attalla, M., Specht, E., 2009. Heat transfer characteristics from in-line arrays of free impinging jets. Heat and Mass Transfer, 45, 537-543.
  • 14. Maddox, J.F., Knight, R.W., Bhavnani, S.H., 2015. Liquid jet impingement with an angled confining wall for spent flow management for power electronics cooling with local thermal measurements. Journal of Electronic Packaging, 137(3), 031015.
  • 15. Polat, S., Huang, B., Mujumdar, A.S., Douglas, W.J.M., 1989. Numerical flow and heat transfer under impinging jets: A review. Annual Review of Heat Transfer, 2, 157-197.
  • 16. Ozmen, Y., Ipek, G., 2016. Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets. Heat and Mass Transfer, 52, 773-787.
  • 17. Caliskan, S., Baskaya, S., Calisir, T., 2014. Experimental and numerical investigation of geometry effects on multiple impinging air jets. International Journal of Heat and Mass Transfer, 75, 685-703.
  • 18. Tepe, A.Ü., 2019. Gaz türbin kanatlarında jet çarpmalı soğutmanın deneysel ve sayısal incelenmesi. Doktora Tezi, Karabük Üniversitesi, Lisansüstü Eğitim Enstitüsü, Makina Mühendisliği Anabilim Dalı, Karabük, 224.
  • 19. San, J.Y., Chen, J.J., 2014. Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array. International Journal of Heat and Mass Transfer, 71, 8-17.
  • 20. Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G., Cong, D., 2016. Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows. International Journal of Thermal Sciences, 108, 123-131.
  • 21. Godi, S.C., Pattamatta, A., Balaji, C., 2020. Heat transfer from a single and row of three dimensional wall jets - a combined experimental and numerical study. International Journal of Heat and Mass Transfer, 159, 119801.
  • 22. Talapati, R.J., Baghel, K., Shrigondekar, H., Katti, V.V., 2024. Influence of inclined unconfined circular air jet impingement on local heat transfer characteristics of smooth flat plate. International Journal of Thermal Sciences, 197, 108848, 1-15.
  • 23. Yalçınkaya, O., Durmaz, U., Tepe, A.Ü., Benim, A.C., Uysal, Ü., 2024. Heat and flow characteristics of aerofoil-shaped fins on a curved target surface in a confined channel for an impinging jet array. Energies, 17(5), 1238.
  • 24. Baz, F.B., Elshenawy, E.A., El-Agouz, S.A., El-Samadony, Y.A.F., Marzouk, S.A., 2024. Experimental study on air impinging jet for effective cooling of multiple protruding heat sources. International Journal of Thermal Sciences, 196, 108707.
  • 25. Ozmen, Y., Baydar, E., 2008. Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers. Heat and Mass Transfer, 44, 1315-1322.
  • 26. Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P., 2011. Introduction to heat transfer. Wiley, Sixth Edition, New Jersey, ABD, 984.
  • 27. Churchill, S.W., Chu, H.H.S., 1975. Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 18, 1323-1329.
  • 28. Kline, S., Mcclintock, F., 1953. Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3-8.
  • 29. Behnia, M., Parneix, S., Shabany, Y., Durbin, P.A., 1999. Numerical study of turbulent heat transfer in confined and unconfined impinging jets. International Journal of Heat and Fluid Flow, 20(1), 1-9.

Experımental Investigation of Heat Transfer Characteristics in Unconfined and Confıned Impinging Jet Arrays with 45° Inclined Secondary Jets

Yıl 2024, , 923 - 937, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1605970

Öz

In this study, the heat transfer effects at the impingement surface in unconfined and confined impinging array jet flows with 45° inclined secondary jets are experimentally investigated. In the unconfined and confined jet flow fields, temperature distributions were obtained with a thermal camera along the center axis of the impingement plate for 20000 and 30000 values of the Reynolds number and 0,5, 1, 3 and 6 values of the nozzle-to-plate/inter-plate spacing. From the obtained temperature distributions, the effect of Reynolds number, nozzle-to-plate/inter-plate spacing and the presence of a confinement plate on the Nusselt distributions on the impingement plate were investigated. In both unconfined and confined cases, the Nusselt values on the impingement plate increase with increasing Reynolds number and decrease with increasing nozzle-to-plate/inter-plate spacing. At the stagnation point on the impingement plate in the direction of the axis of the primary nozzle and at the position of the impingement plate in the direction of the axes of the secondary jets, the local Nusselt number takes peak values. The peaks on the impingement plate become sharper as the Reynolds number increases. The positions of the peaks formed by the secondary jets on the impingement plate shift to larger ±r/D values with increasing nozzle-to-plate/inter-plate spacing. The presence of a confinement plate in the flow fields reduces the Nusselt values on the impingement plate.

Kaynakça

  • 1. Tanaka, E., 1974. The interference of two dimensional parallel jets experiments on the combined flow of dual jets. Bulletin of JSME, 17(109), 920-927.
  • 2. Siclari, M.J., Hill, W.G., Jenkins, R.C., 1981. Stagnation line and upwash formation of two impinging jets. AIAA Journal, 19(10), 1286-1293.
  • 3. Mikhail S., Morces S.M., Abou-Ellail M.M.M., Ghaly, W.S., 1982). Numerical prediction of flow field and heat transfer from a row of laminar slot jets impinging on a flat plate. International Heat Transfer Conference 7, 377-382.
  • 4. Saad, N.R., Polat, S., Douglas, W.J.M., 1992. Confined multiple impinging slot jets without crossflow effects. International Journal of Heat and Fluid Flow, 13(1), 2-14.
  • 5. Barata, J.M.M., 1996. Fountain flows produced by multiple impinging jets in a crossflow. AIAA Journal, 34(12), 2523-2530.
  • 6. Rady, M., Arquis, E., 2006. Heat transfer enhancement of multiple impinging slot jets with symmetric exhaust ports and confinement surface protrusions. Applied Thermal Engineering, 26(11), 1310-1319.
  • 7. Dong, L.L., Leung, C.W., Cheung, C.S., 2004. Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets. International Journal of Heat and Mass Transfer, 47(3), 489-500.
  • 8. Abdel-Fattah, A., 2007. Numerical and experimental study of turbulent impinging twin-jet flow. Experimental Thermal and Fluid Science, 31(8), 1061-1072.
  • 9. Ozmen, Y., 2011. Confined impinging twin air jets at high Reynolds numbers. Experimental Thermal and Fluid Science, 35(2), 355-363.
  • 10. Koched, A., Pavageau, M., Aloui, F., 2012. Vortex structure in the wall region of an impinging plane jet. Journal of Applied Fluid Mechanics, 4(2), 61-69.
  • 11. Al Mubarak, A.A., Shaahid, S.M., Al-Hadhrami, L.M., 2013. Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets. Thermal Science, 17(4), 1195-1206.
  • 12. Buchlin, J.M., 2011. Convective heat transfer in impinging-gas-jet arrangements. Journal of Applied Fluid Mechanics, 4(2), 137-149.
  • 13. Attalla, M., Specht, E., 2009. Heat transfer characteristics from in-line arrays of free impinging jets. Heat and Mass Transfer, 45, 537-543.
  • 14. Maddox, J.F., Knight, R.W., Bhavnani, S.H., 2015. Liquid jet impingement with an angled confining wall for spent flow management for power electronics cooling with local thermal measurements. Journal of Electronic Packaging, 137(3), 031015.
  • 15. Polat, S., Huang, B., Mujumdar, A.S., Douglas, W.J.M., 1989. Numerical flow and heat transfer under impinging jets: A review. Annual Review of Heat Transfer, 2, 157-197.
  • 16. Ozmen, Y., Ipek, G., 2016. Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets. Heat and Mass Transfer, 52, 773-787.
  • 17. Caliskan, S., Baskaya, S., Calisir, T., 2014. Experimental and numerical investigation of geometry effects on multiple impinging air jets. International Journal of Heat and Mass Transfer, 75, 685-703.
  • 18. Tepe, A.Ü., 2019. Gaz türbin kanatlarında jet çarpmalı soğutmanın deneysel ve sayısal incelenmesi. Doktora Tezi, Karabük Üniversitesi, Lisansüstü Eğitim Enstitüsü, Makina Mühendisliği Anabilim Dalı, Karabük, 224.
  • 19. San, J.Y., Chen, J.J., 2014. Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array. International Journal of Heat and Mass Transfer, 71, 8-17.
  • 20. Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G., Cong, D., 2016. Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows. International Journal of Thermal Sciences, 108, 123-131.
  • 21. Godi, S.C., Pattamatta, A., Balaji, C., 2020. Heat transfer from a single and row of three dimensional wall jets - a combined experimental and numerical study. International Journal of Heat and Mass Transfer, 159, 119801.
  • 22. Talapati, R.J., Baghel, K., Shrigondekar, H., Katti, V.V., 2024. Influence of inclined unconfined circular air jet impingement on local heat transfer characteristics of smooth flat plate. International Journal of Thermal Sciences, 197, 108848, 1-15.
  • 23. Yalçınkaya, O., Durmaz, U., Tepe, A.Ü., Benim, A.C., Uysal, Ü., 2024. Heat and flow characteristics of aerofoil-shaped fins on a curved target surface in a confined channel for an impinging jet array. Energies, 17(5), 1238.
  • 24. Baz, F.B., Elshenawy, E.A., El-Agouz, S.A., El-Samadony, Y.A.F., Marzouk, S.A., 2024. Experimental study on air impinging jet for effective cooling of multiple protruding heat sources. International Journal of Thermal Sciences, 196, 108707.
  • 25. Ozmen, Y., Baydar, E., 2008. Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers. Heat and Mass Transfer, 44, 1315-1322.
  • 26. Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P., 2011. Introduction to heat transfer. Wiley, Sixth Edition, New Jersey, ABD, 984.
  • 27. Churchill, S.W., Chu, H.H.S., 1975. Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 18, 1323-1329.
  • 28. Kline, S., Mcclintock, F., 1953. Describing uncertainties in single-sample experiments. Mechanical Engineering, 75, 3-8.
  • 29. Behnia, M., Parneix, S., Shabany, Y., Durbin, P.A., 1999. Numerical study of turbulent heat transfer in confined and unconfined impinging jets. International Journal of Heat and Fluid Flow, 20(1), 1-9.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Haluk Keleş 0000-0002-6562-8902

Yücel Özmen 0000-0003-1127-1060

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 10 Mayıs 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Keleş, H., & Özmen, Y. (2024). 45° Eğimli İkincil Jetlere Sahip Sınırlandırılmamış ve Sınırlandırılmış Çarpan Jet Dizilerinde Isı Transferi Karakteristiklerinin Deneysel İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 923-937. https://doi.org/10.21605/cukurovaumfd.1605970