Araştırma Makalesi
BibTex RIS Kaynak Göster

Plakalı ve Çerçeveli Isı Değiştiricisi Etkinliğine Farklı Parametrelerin Etkisinin Deneysel İncelemesi

Yıl 2024, , 951 - 959, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606028

Öz

Plakalı ve çerçeveli ısı değiştiricileri, akışkanlar arasında ısı transferini sağlamak için bir dizi metal plaka kullanır. Bu akışkanlar, belirli kanallar boyunca yönlendirilip izole edilmeleri sağlanırken verimli bir ısı alışverişi gerçekleşir. Son yıllarda, araştırmacılar farklı özelliklerin ısı değiştirici performansı üzerindeki etkilerini incelemişlerdir. Bu çalışmanın amacı, çeşitli faktörlerin ısı değiştiricinin etkinliği üzerindeki etkisini araştırmaktır. Deneysel analiz, farklı 6000 ile 30000 arasında değişen Re sayıları ve 25℃ ile 35℃ arasında değişen sıcak akışkan giriş sıcaklıkları dikkate alınarak saf su kullanılarak gerçekleştirilmiştir. Türbülanslı akış koşulları altında, Th,in=35℃ sabitken, Reynolds sayısının 6000 ile 20000 arasında değişmesi durumunda ısı transfer etkinliğinin %13,6 arttığı gözlemlenmiştir. Ancak, bu artış, Re = 20000-30000 aralığında önemli ölçüde azalmıştır. Sıcak akışkan giriş sıcaklığı Th,in=25℃'den 35℃'ye artırıldığında, plakalı ve çerçeveli ısı değiştiricisinin etkinliği %4,3 artmıştır. Bu çalışma, farklı geometrilere ve farklı akışkanlar için endüstriyel uygulamalarda kullanılan ısı değiştiricileri üzerine yapılacak gelecekteki çalışmalar için bir temel oluşturmaktadır. Bu çalışma sonuçlarının, gelecekte endüstriyel uygulamalar için daha modüler ve verimli plakalı çerçeveli ısı değiştiricileri tasarımında kullanılabileceği düşünülmektedir.

Kaynakça

  • 1. Khan, T.S., Khan, M.S., Chyu, M.C., Ayub, Z.H., 2010. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Applied Thermal Engineering, 30(8-9), 1058-1065.
  • 2. Gherasim, I., Taws, M., Galanis, N., Nguyen, C.T., 2011. Heat transfer and fluid flow in a plate heat exchanger part I. experimental investigation. International Journal of Thermal Sciences, 50(8), 1492-1498.
  • 3. Martin, H., 1996. A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chemical Engineering and Processing: Process Intensification, 35(4), 301-310.
  • 4. Kanaris, A.G., Mouza, A.A., Paras, S.V., 2009. Optimal design of a plate heat exchanger with undulated surfaces. International Journal of Thermal Sciences, 48(6), 1184-1195.
  • 5. Dvořák, V., Vít, T., 2017. Evaluation of cae methods used for plate heat exchanger design. Energy Procedia, 111, 141-150.
  • 6. Močnik, U., Čikić, A., Muhič, S., 2024. Numerical and experimental analysis of fluid flow and flow visualization at low Reynolds numbers in a dimple pattern plate heat exchanger. Energy, 288, 129812.
  • 7. Jouhara, H., Almahmoud, S., Brough, D., Guichet, V., Delpech, B., Chauhan, A., Serey, N., 2021. Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger. Energy, 219, 119624.
  • 8. Javadi, F.S., Sadeghipour, S., Saidur, R., BoroumandJazi, G., Rahmati, B., Elias, M.M., Sohel, M.R., 2013. The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. International Communications in Heat and Mass Transfer, 44, 58-63.
  • 9. Rios-Iribe, E.Y., Cervantes-Gaxiola, M.E., Rubio-Castro, E., Hernández-Calderón, O.M., 2016. Heat transfer analysis of a non-Newtonian fluid flowing through a plate heat exchanger using CFD. Applied Thermal Engineering, 101, 262-272.
  • 10. Zheng, D., Wang, J., Chen, Z., Baleta, J., Sundén, B., 2020. Performance analysis of a plate heat exchanger using various nanofluids. International Journal of Heat and Mass Transfer, 158, 119993.
  • 11. Ahmadi, M.H., Mirlohi, A., Nazari, M.A., Ghasempour, R., 2018. A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids, 265, 181-188.
  • 12. Yang, Y., Li, S., Liu, H., 2023. Experimental investigation on the heat transfer behavior of water in offset strip fin channels. International Journal of Heat and Mass Transfer, 202, 123656.
  • 13. Song, R., Cui, M., Liu, J., 2017. A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. International Journal of Heat and Mass Transfer, 115, 695-705.
  • 14. Jiang, Q., Zhuang, M., Zhu, Z., Shen, J., 2019. Thermal hydraulic characteristics of cryogenic offset-strip fin heat exchangers. Applied Thermal Engineering, 150, 88-98.
  • 15. Wang, D., Wu, Q., Wang, G., Zhang, H., Yuan, H., 2024. Experimental and numerical study of plate heat exchanger based on topology optimization. International Journal of Thermal Sciences, 195, 108659.
  • 16. Yu, C., Shao, M., Zhang, W., Wang, G., Huang, M., 2024. Study on heat transfer synergy and optimization of capsule-type plate heat exchangers. Processes, 12(3), 604.
  • 17. Nguyen, D.H., Nguyen, P.Q., Rehman, R.U., Kim, J.F., Ahn, H.S., 2024. Optimizing the effect of micro-surface on the thermal hydraulic performance of plate heat exchanger. Applied Thermal Engineering, 239, 122172.
  • 18. Wciślik, S., 2024. The influence of nusselt correlation on exergy efficiency of a plate heat exchanger operating with TiO2: SiO2/EG: DI hybrid nanofluid. Inventions, 9(1), 11.
  • 19. Liu, X., Liu, Y., Wang, Y., Chen, X., Feng, X., Wang, S., Liu, Q., 2024. In situ heterojunction-based PEC sensor coupled with LSPR for sensitive detection of aflatoxin B1. Journal of the Electrochemical Society, 171(4), 046501.
  • 20. Wang, Y., Ding, S., Yan, A., Wang, F., 2024. Characterization of brazed plate heat exchanger performance based on experimental and coupled heat-fluid-solid numerical simulation. In Journal of Physics: Conference Series, 2683(1), 012016. IOP Publishing.
  • 21. Alhuyi Nazari, M., Mukhtar, A., Mehrabi, A., Ahmadi, M.H., Sharifpur, M., Luong, T.N.L., 2024. Effect of using hybrid nanofluid and vortex generator on thermal performance of plate-fin heat exchanger: numerical investigation. Journal of Thermal Analysis and Calorimetry, 149(9), 4227-4237.
  • 22. Dvořák, V., Vít, T., 2017. CAE methods for plate heat exchanger design. Energy Procedia, 134, 234-243.
  • 23. Al-Turki, Y.A., Moria, H., Shawabkeh, A., Pourhedayat, S., Hashemian, M., Dizaji, H.S., 2021. Thermal, frictional and exergetic analysis of non-parallel configurations for plate heat exchangers. Chemical Engineering and Processing-Process Intensification, 161, 108319.
  • 24. Mikhaeil, M., Gaderer, M., Dawoud, B., 2020. On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study. Energy, 207, 118272.
  • 25. Li, W., Hrnjak, P., 2021. Distribution de l'écoulement monophasique dans les échangeurs de chaleur à plaques: expériences et modèles. International Journal of Refrigeration, 126, 45-56.
  • 26. Kılıç, M., Şahin, M., Demircan, T., Kilinc, Z., Ullah, A., 2023. Numerical investigation of cooling an industrial roller by using swirling jets. El-Cezeri, 10(1), 147-159.
  • 27. Chen, H.T., Chang, S.C., Hsu, M.H., You, C.H., 2021. Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC. International Journal of Heat and Mass Transfer, 181, 121880.
  • 28. Wang, B., Klemeš, J.J., Li, N., Zeng, M., Varbanov, P.S., Liang, Y., 2021. Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method. Renewable and Sustainable Energy Reviews, 138, 110479.
  • 29. Careri, F., Khan, R.H., Todd, C., Attallah, M.M., 2023. Additive manufacturing of heat exchangers in aerospace applications: a review. Applied Thermal Engineering, 121387.
  • 30. Li, K., Zeng, Y., 2022. Corrosion of heat exchanger materials in co-combustion thermal power plants. Renewable and Sustainable Energy Reviews, 161, 112328.
  • 31. Cramer, C.L., Lara‐Curzio, E., Elliott, A.M., Aguirre, T.G., Yoon, B., Fricke, B.A., Nawaz, K., 2024. Material selection and manufacturing for high‐temperature heat exchangers: Review of state‐of‐the‐art development, opportunities, and challenges. International Journal of Ceramic Engineering & Science, 6(5), e10230.
  • 32. Li, J., Yang, Z., Hu, S., Duan, Y., 2021. Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems. Energy, 228, 120589.
  • 33. Zhang, X., Keramati, H., Arie, M., Singer, F., Tiwari, R., Shooshtari, A., Ohadi, M., 2018. Recent developments in high temperature heat exchangers: A review. Frontiers in Heat and Mass Transfer, 11.
  • 34. Cengel, Y.A., Ghajar, A.J., 2014. Heat and Mass Transfer Fundamentals and Applications. (in SI Units). 5th Edition, McGraw-Hill Higher Education, New York.

Experimental Investigation of the Effect of Different Parameters on Plate and Frame Heat Exchanger Effectiveness

Yıl 2024, , 951 - 959, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606028

Öz

Plate & frame heat exchangers use a series of metal plates to conduct heat transfer between fluids. These fluids are directed through specific channels, ensuring they remain isolated while allowing efficient heat exchange. In recent years, researchers have looked at how different characteristics affect heat exchanger performance. The purpose of this study is to examine the impact of various factors on the effectiveness of the heat exchanger. The experimental analysis was conducted using pure water, considering different Re numbers ranging from 6000 to 30000 and varying hot fluid inlet temperatures between 25℃ and 35℃. It was observed that under turbulent flow conditions, the heat transfer effectiveness increased of 13.6% when the Reynolds number varied between Re = 6000 – 20000 at constant Th,in=35℃. However, the extent of this increase diminished significantly within the Re = 20000-30000 range. When the inlet temperature of hot fluid was raised Th,in=25℃ to 35℃ the plate & frame heat exchanger effectiveness increased of 4.3%. This study provides a basis for future studies on heat exchangers used in industrial applications with different geometries and different fluids. It is considered that the results of this study could be used in the future to design more modular and efficient plate heat exchangers for industrial applications.

Kaynakça

  • 1. Khan, T.S., Khan, M.S., Chyu, M.C., Ayub, Z.H., 2010. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Applied Thermal Engineering, 30(8-9), 1058-1065.
  • 2. Gherasim, I., Taws, M., Galanis, N., Nguyen, C.T., 2011. Heat transfer and fluid flow in a plate heat exchanger part I. experimental investigation. International Journal of Thermal Sciences, 50(8), 1492-1498.
  • 3. Martin, H., 1996. A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chemical Engineering and Processing: Process Intensification, 35(4), 301-310.
  • 4. Kanaris, A.G., Mouza, A.A., Paras, S.V., 2009. Optimal design of a plate heat exchanger with undulated surfaces. International Journal of Thermal Sciences, 48(6), 1184-1195.
  • 5. Dvořák, V., Vít, T., 2017. Evaluation of cae methods used for plate heat exchanger design. Energy Procedia, 111, 141-150.
  • 6. Močnik, U., Čikić, A., Muhič, S., 2024. Numerical and experimental analysis of fluid flow and flow visualization at low Reynolds numbers in a dimple pattern plate heat exchanger. Energy, 288, 129812.
  • 7. Jouhara, H., Almahmoud, S., Brough, D., Guichet, V., Delpech, B., Chauhan, A., Serey, N., 2021. Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger. Energy, 219, 119624.
  • 8. Javadi, F.S., Sadeghipour, S., Saidur, R., BoroumandJazi, G., Rahmati, B., Elias, M.M., Sohel, M.R., 2013. The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger. International Communications in Heat and Mass Transfer, 44, 58-63.
  • 9. Rios-Iribe, E.Y., Cervantes-Gaxiola, M.E., Rubio-Castro, E., Hernández-Calderón, O.M., 2016. Heat transfer analysis of a non-Newtonian fluid flowing through a plate heat exchanger using CFD. Applied Thermal Engineering, 101, 262-272.
  • 10. Zheng, D., Wang, J., Chen, Z., Baleta, J., Sundén, B., 2020. Performance analysis of a plate heat exchanger using various nanofluids. International Journal of Heat and Mass Transfer, 158, 119993.
  • 11. Ahmadi, M.H., Mirlohi, A., Nazari, M.A., Ghasempour, R., 2018. A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids, 265, 181-188.
  • 12. Yang, Y., Li, S., Liu, H., 2023. Experimental investigation on the heat transfer behavior of water in offset strip fin channels. International Journal of Heat and Mass Transfer, 202, 123656.
  • 13. Song, R., Cui, M., Liu, J., 2017. A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. International Journal of Heat and Mass Transfer, 115, 695-705.
  • 14. Jiang, Q., Zhuang, M., Zhu, Z., Shen, J., 2019. Thermal hydraulic characteristics of cryogenic offset-strip fin heat exchangers. Applied Thermal Engineering, 150, 88-98.
  • 15. Wang, D., Wu, Q., Wang, G., Zhang, H., Yuan, H., 2024. Experimental and numerical study of plate heat exchanger based on topology optimization. International Journal of Thermal Sciences, 195, 108659.
  • 16. Yu, C., Shao, M., Zhang, W., Wang, G., Huang, M., 2024. Study on heat transfer synergy and optimization of capsule-type plate heat exchangers. Processes, 12(3), 604.
  • 17. Nguyen, D.H., Nguyen, P.Q., Rehman, R.U., Kim, J.F., Ahn, H.S., 2024. Optimizing the effect of micro-surface on the thermal hydraulic performance of plate heat exchanger. Applied Thermal Engineering, 239, 122172.
  • 18. Wciślik, S., 2024. The influence of nusselt correlation on exergy efficiency of a plate heat exchanger operating with TiO2: SiO2/EG: DI hybrid nanofluid. Inventions, 9(1), 11.
  • 19. Liu, X., Liu, Y., Wang, Y., Chen, X., Feng, X., Wang, S., Liu, Q., 2024. In situ heterojunction-based PEC sensor coupled with LSPR for sensitive detection of aflatoxin B1. Journal of the Electrochemical Society, 171(4), 046501.
  • 20. Wang, Y., Ding, S., Yan, A., Wang, F., 2024. Characterization of brazed plate heat exchanger performance based on experimental and coupled heat-fluid-solid numerical simulation. In Journal of Physics: Conference Series, 2683(1), 012016. IOP Publishing.
  • 21. Alhuyi Nazari, M., Mukhtar, A., Mehrabi, A., Ahmadi, M.H., Sharifpur, M., Luong, T.N.L., 2024. Effect of using hybrid nanofluid and vortex generator on thermal performance of plate-fin heat exchanger: numerical investigation. Journal of Thermal Analysis and Calorimetry, 149(9), 4227-4237.
  • 22. Dvořák, V., Vít, T., 2017. CAE methods for plate heat exchanger design. Energy Procedia, 134, 234-243.
  • 23. Al-Turki, Y.A., Moria, H., Shawabkeh, A., Pourhedayat, S., Hashemian, M., Dizaji, H.S., 2021. Thermal, frictional and exergetic analysis of non-parallel configurations for plate heat exchangers. Chemical Engineering and Processing-Process Intensification, 161, 108319.
  • 24. Mikhaeil, M., Gaderer, M., Dawoud, B., 2020. On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study. Energy, 207, 118272.
  • 25. Li, W., Hrnjak, P., 2021. Distribution de l'écoulement monophasique dans les échangeurs de chaleur à plaques: expériences et modèles. International Journal of Refrigeration, 126, 45-56.
  • 26. Kılıç, M., Şahin, M., Demircan, T., Kilinc, Z., Ullah, A., 2023. Numerical investigation of cooling an industrial roller by using swirling jets. El-Cezeri, 10(1), 147-159.
  • 27. Chen, H.T., Chang, S.C., Hsu, M.H., You, C.H., 2021. Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC. International Journal of Heat and Mass Transfer, 181, 121880.
  • 28. Wang, B., Klemeš, J.J., Li, N., Zeng, M., Varbanov, P.S., Liang, Y., 2021. Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method. Renewable and Sustainable Energy Reviews, 138, 110479.
  • 29. Careri, F., Khan, R.H., Todd, C., Attallah, M.M., 2023. Additive manufacturing of heat exchangers in aerospace applications: a review. Applied Thermal Engineering, 121387.
  • 30. Li, K., Zeng, Y., 2022. Corrosion of heat exchanger materials in co-combustion thermal power plants. Renewable and Sustainable Energy Reviews, 161, 112328.
  • 31. Cramer, C.L., Lara‐Curzio, E., Elliott, A.M., Aguirre, T.G., Yoon, B., Fricke, B.A., Nawaz, K., 2024. Material selection and manufacturing for high‐temperature heat exchangers: Review of state‐of‐the‐art development, opportunities, and challenges. International Journal of Ceramic Engineering & Science, 6(5), e10230.
  • 32. Li, J., Yang, Z., Hu, S., Duan, Y., 2021. Influences of fluid corrosivity and heat exchanger materials on design and thermo-economic performance of organic Rankine cycle systems. Energy, 228, 120589.
  • 33. Zhang, X., Keramati, H., Arie, M., Singer, F., Tiwari, R., Shooshtari, A., Ohadi, M., 2018. Recent developments in high temperature heat exchangers: A review. Frontiers in Heat and Mass Transfer, 11.
  • 34. Cengel, Y.A., Ghajar, A.J., 2014. Heat and Mass Transfer Fundamentals and Applications. (in SI Units). 5th Edition, McGraw-Hill Higher Education, New York.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Merve Ala Bu kişi benim 0009-0001-4045-5267

Mahir Şahin 0000-0002-9565-9160

Mustafa Kılıç 0000-0002-8006-149X

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 19 Şubat 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ala, M., Şahin, M., & Kılıç, M. (2024). Experimental Investigation of the Effect of Different Parameters on Plate and Frame Heat Exchanger Effectiveness. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 951-959. https://doi.org/10.21605/cukurovaumfd.1606028