Mobil Yaşam Alanlarında Karbon Ayak İzinin Azaltılması: Enerji Verimliliği ve Çift Tanklı Su Isıtıcı Modelleri
Yıl 2025,
Cilt: 40 Sayı: 4, 899 - 914, 29.12.2025
Mehmet Akif Kartal
,
Ahmet Feyzioğlu
Öz
Bu çalışma, karavan ve mobil konutlar için tek tanklı (STE) ve çift tanklı (DUT) elektrikli su ısıtıcılarını karşılaştırmaktadır. Beş yıllık veri ve LSTM tabanlı yaz tüketim tahminiyle, sıcak su kullanımının mevsimler arası farkının azaldığı ve yıllık %0.56 düşüş gösterdiği belirlenmiştir. Simülasyonlar, 200 L/1 kW DUT sisteminin STE’ye göre litre başına enerji tüketimini %12.2 azalttığını, Türkiye şebeke emisyon faktörüyle hesaplanan GHG emisyonunu ise ortalama %47.1 düşürdüğünü ortaya koymuştur. Yüksek başlangıç maliyetine rağmen DUT sistemlerinin geri ödeme süresi ortalama 3.5 yıl (yüksek elektrik fiyatlarında 2.65 yıl) olarak hesaplanmıştır. Sonuçlar, DUT mimarisinin mobil yaşam alanlarında sürdürülebilir, düşük karbonlu ve ekonomik bir çözüm olduğunu kanıtlamaktadır.
Kaynakça
-
1. Fetting, C. (2020). The european green deal. ESDN Report, ESDN Office, Vienna.
-
2. The Paris Agreement, (2016). United Nations Framework Convention on Climate Change (UNFCCC).
-
3. Raghavan, S.V., Wei, M., Kammen, D.M. (2017). Scenarios to decarbonize residential water heating in california. Energy Policy, 109, 441-451.
-
4. Sheikh, I. (2017). Decarbonizing residential space and water heating: The case for electrification. In Proceedings of the eceee 2017 Summer Study on Energy Efficiency, 1-329. European Council for an Energy Efficient Economy.
-
5. Shimoda, Y., Sugiyama, M., Nishimoto, R., Momonoki, T. (2021). Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050. Applied Energy, 303, 117510.
-
6. Kartal, M.A. (2024). Data-driven decarbonization: optimizing p+r in istanbul with machine learning energy modeling and its. Front. Energy Res., 12, 1395814.
-
7. Kartal, M.A. (2024). Contamination in heat exchangers: types, energy effects and prevention methods. IgMin Res., 2(7), 503-507.
-
8. Aslan, E. (2024). Araçlarda CO2 emisyonlarının farklı yapay sinir ağı modelleri kullanılarak tahminlerinin karşılaştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(2), 309-324.
-
9. Butler, D. Caravanning statistics. https://www.finder.com/uk/caravanning-statistics, Access date: 10.11.2022.
-
10. Pitchup.com. Facts and figures. https://www.pitchup.com/about/media/, Access date: 10.11.2022.
-
11. Federation, E.C. Environment. https://www.e-c-f.com/artikel/environment/, Access date: 09.11.2022.
-
12. Bergk, F., Biemann K., Kämper, C., Kräck, J. & Knörr, W. (2020). Klimabilanz von reisen mit reisemobilen und caravans. IFEU, Heidelberg.
-
13. Five eco friendly caravans for a green living on the go. https://ecofriend.com/eco-friendly-caravans-green-living.html, Access date: 09.11.2022.
-
14. Tantekin, A. & Özdil, N.F. (2022). Energy analysis in a solar house with building-integrated photovoltaic (bipv) system. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(3), 685-698.
-
15. Things you should know about water heaters for caravans and motor homes. https://www.truma.com/uk/en/camping-guides/guide-water-heater-caravan, Access date: 10.11.2022.
-
16. Caravan Hot Water Heaters. https://ringhotwater.com.au/product-category/caravan-rv/caravan-hot-water-heaters/, Access date: 11.10.2022.
-
17. Dennis, K. (2015). Environmentally beneficial electrification: electricity as the end-use option. The Electricity Journal, 28(9), 100-112.
-
18. Munuera, L., Bradford, J., Kelly, N. & Hawkes, A. (2013). The role of energy efficiency in decarbonising heat via electrification. Proc. ECEEE 2013 Summer Study on Energy Efficiency, 1159-1164.
-
19. Wei, M., Nelson, J.H., Greenblatt, J.B., Mileva, A., Johnston, J., Ting, M., Yang, C., Jones, C., McMahon, J.E. & Kammen, D.M. (2013). Deep carbon reductions in california require electrification and integration across economic sectors. Environmental Research Letters, 8(1), 014038.
-
20. Kelly, J.A., Fu, M. & Clinch, J.P. (2016). Residential home heating: the potential for air source heat pump technologies as an alternative to solid and liquid fuels. Energy Policy, 98, 431-442.
-
21. Maclean, K., Sansom, R., Watson, T. & Gross, R. (2016). Managing heat system decarbonisation: comparing the impacts and costs of transitions in heat infrastructure. Imperial CollegeCentre for Energy Policy and Technology, 1-62.
-
22. SNET, E. (2016). Final 10-year etip snet r&i roadmap covering 2017-26. European Technology and Innovation Platform Smart Networks for the Energy Transition (ETIP SNET).
-
23. EPA, U. (2016). Inventory of us greenhouse gas emissions and sinks: 1990‐2014. EPA 430‐R‐16‐002. US Environmental Protection Agency Washington, DC, USA.
-
24. U.S. Department of Energy. (2012). 2011 Buildings energy data book. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy.
-
25. Nehrir, M.H., Jia, R., Pierre, D.A. & Hammerstrom, D.J. (2007). Power management of aggregate electric water heater loads by voltage control. IEEE Power Engineering Society General Meeting, IEEE, 1-6.
-
26. Diao, R., Lu, S., Elizondo, M., Mayhorn, E., Zhang, Y. & Samaan, N. (2012). Electric water heater modeling and control strategies for demand response. IEEE power and energy society general meeting, IEEE, 1-8.
-
27. Aalami, H.A. & Nojavan, S. (2016). Energy storage system and demand response program effects on stochastic energy procurement of large consumers considering renewable generation. IET Generation, Transmission & Distribution, 10(1), 107-114.
-
28. Ahmed, M.S., Mohamed, A., Homod, R.Z., Shareef, H., Sabry, A.H. & Khalid, K.B. (2015). Smart plug prototype for monitoring electrical appliances in home energy management system. IEEE Student Conference on Research and Development (SCOReD), IEEE, 32-36.
-
29. Balke, E.C., Healy, W.M. & Ullah, T. (2016). An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate. Energy and Buildings, 133, 371-380.
-
30. Carrington, C., Warrington, D. & Yak, Y. (1985). Structure of domestic hot water consumption. International Journal of Energy Research, 9(1), 65-75.
-
31. Kar, A. & Al-Dossary, K. (1995). Thermal performances of water heaters in series. Applied energy, 52(1), 47-53.
-
32. Becker, B. & Stogsdill, K. (1990). A domestic hot water use database. ASHRAE Journal, 32(9), 21-25.
-
33. Kar, A.K. & Kar, Ü. (1996). Optimum design and selection of residential storage-type electric water heaters for energy conservation. Energy Conversion and Management, 37(9), 1445-1452.
-
34. Kar, A., Yazicioglu, R. & Yazıcıoğlu, O. (2020). Thermal optimization of partitioned electric water heaters for energy conservation. Journal of Energy Research and Reviews, 6(1), 59-73.
-
35. Ahmed, M.S., Mohamed, A., Homod, R.Z., Shareef, H. & Khalid, K. (2016). Modeling of electric water heater and air conditioner for residential demand response strategy. International Journal of Applied Engineering Research, 11(16), 9037-9046.
-
36. Mabina, P.G. & Mukoma, P. (2019). Energy optimization and management of electric water heaters using direct load control. The Southern African Energy Efficiency Confederation Conference (SAEEC), Farm Inn, Silver Lakes, Pretoria.
-
37. Kepplinger, P., Huber, G. & Petrasch, J. (2015). Autonomous optimal control for demand side management with resistive domestic hot water heaters using linear optimization. Energy and Buildings, 100, 50-55.
-
38. Booysen, M., Engelbrecht, J., Ritchie, M., Apperley, M. & Cloete, A. (2019). How much energy can optimal control of domestic water heating save? Energy for Sustainable Development, 51, 73-85.
-
39. Ritchie, M., Engelbrecht, J. & Booysen, M. (2021). A probabilistic hot water usage model and simulator for use in residential energy management. Energy and Buildings, 235, 110727.
-
40. Ritchie, M.J., Engelbrecht, J.A. & Booysen, M.J. (2021). Practically-achievable energy savings with the optimal control of stratified water heaters with predicted usage. Energies, 14(7), 1963.
-
41. Feyzioglu, A. (2012). Development of control strategies and implementation to electrical water heaters for energy conservation. Thesis for the degree of doctor of philosophy in mechanical engineering, Marmara University, Turkey.
-
42. Kondoh, J., Lu, N. & Hammerstrom, D.J. (2011). An evaluation of the water heater load potential for providing regulation service. IEEE Power and Energy Society General Meeting, 1-8.
-
43. Engelbrecht, J., Ritchie, M.J. & Booysen, M. (2021). Optimal schedule and temperature control of stratified water heaters. Energy for Sustainable Development, 62, 67-81.
-
44. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). (1993). ANSI/ASHRAE Standard 90.2-1993: Energy efficient design of low-rise residential buildings. Atlanta, 53-54 (Section 8.9.4, hourly domestic hot water fraction and table 8-4, daily domestic hot water load profile).
-
45. Bouchelle, M.P., Parker, D.S. & Anello, M.T. (2000). Factors influencing water heating energy use and peak demand in a large scale residential monitoring study (FSEC-CR-1671-00). Florida Solar Energy Center, University of Central Florida.
-
46. Perlman, M. & Mills, B. (1985). Development of residential hot water use patterns. ASHRAE Transactions, 91(2A), 657-679.
-
47. Ahmed, K., Pylsy, P. & Kurnitski, J. (2016). Hourly consumption profiles of domestic hot water for different occupant groups in dwellings. Solar Energy, 137, 516-530.
-
48. Fuentes, E., Arce, L. & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews, 81, 1530-1547.
-
49. Fairey, P. & Parker, D. (2004). A review of hot water draw profiles used in performance analysis of residential domestic hot water systems. Florida Solar Energy Center, 2.
-
50. Abdi Hejazi, S. (1989). Sizing a storage type water heating system. ASHRAE Journal, 31(2), 35-40.
-
51. Mínguez, J. M. (1987). Water‐heaters in series. International Journal of Energy Research, 11(1), 145-151.
-
52. Feyzioglu, A. & Kar, A.K. (2016). Development of control strategies and implementation to electrical water heaters for energy conservation. Cybernetics and Information Technologies, 16(4), 98-112.
-
53. Kartal, M.A., Ersoy, S. & Atakök, G. (2024). Cooling and multiphase analysıs of heated environmentally-friendly R152a (c2h4f2) fluid coming from the production process according to nist indicators. Applied Sciences, 14(10), 4143.
-
54. Kartal, M.A. & Feyzioğlu, A. (2024). Experimental comparison and numerical heat analysis of new designed shell and tube-heat exchanger with designed geometry at different baffle intervals: status of energy efficiency. International Journal of Low-Carbon Technologies, 19, 1845-1859.
-
55. Kartal, M.A. & Feyzioğlu, A. (2024). Numerical analysis of altered parallel flow heat exchanger with promoted geometry at multifarious baffle prolongs. Energies, 17, 1676.
-
56. Kartal, M.A. & Feyzioğlu, A. (2023). Numerical analysis of multipurpose shell-tube-heat exchanger withal stylized geometry at different baffle gaps and various flow rates. Case Studies in Thermal Engineering, 52, 103810.
-
57. Türkiye Elektrik Üretim-İletim İstatistikleri. https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri, Access date: 17.10.2022.
-
58. Ureden, A. & Ozden, S. (2018). Kurumsal karbon ayak izi nasıl hesaplanır: teorik bir çalışma. Anadolu Orman Araştırmaları Dergisi, 4(2), 98-108.
-
59. Holloway, S., Akai, M., Pipatti, R. & Rypdal, K. (2006). Carbon dioxide transport, injection and geological storage. IPCC guidelines for national greenhouse gas inventories: Intergovernmental Panel on Climate Change, 2(5), 1-32.
-
60. The Greenhouse Gas Protocol (2015). World Business Council for Sustainable Development, World Resources Institute.
-
61. Türkiye Ulusal Elektrik Şebekesi Emisyon Faktörü (2022). T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Enerji Verimliliği ve Çevre Dairesi Başkanlığı.
-
62. Saidur, R., Masjuki, H.H., Jamaluddin, M. & Ahmed, S. (2007). Energy and associated greenhouse gas emissions from household appliances in malaysia. Energy Policy, 35(3), 1648-1653.
Reducing Carbon Footprint In Mobile Living Spaces: Energy Efficiency and Double Tank Water Heater Models
Yıl 2025,
Cilt: 40 Sayı: 4, 899 - 914, 29.12.2025
Mehmet Akif Kartal
,
Ahmet Feyzioğlu
Öz
This study compares single-tank (STE) and dual-tank (DUT) electric water heaters for caravans and mobile homes. Based on five years of data and an LSTM-based summer consumption forecast, it was determined that seasonal differences in hot water usage are decreasing, with an annual decline of approximately 0.56%. Simulations revealed that the 200 L/1 kW DUT system reduces energy consumption per litre by up to 12.2% compared to STE, and achieves an average 47.1% reduction in GHG emissions (calculated using Turkey’s grid emission factor). Despite the higher initial cost, the payback period for DUT systems is calculated at an average of 3.5 years (as low as 2.65 years in regions with high electricity prices). The results demonstrate that the DUT architecture provides a sustainable, low-carbon, and economically viable hot water solution for mobile living spaces.
Kaynakça
-
1. Fetting, C. (2020). The european green deal. ESDN Report, ESDN Office, Vienna.
-
2. The Paris Agreement, (2016). United Nations Framework Convention on Climate Change (UNFCCC).
-
3. Raghavan, S.V., Wei, M., Kammen, D.M. (2017). Scenarios to decarbonize residential water heating in california. Energy Policy, 109, 441-451.
-
4. Sheikh, I. (2017). Decarbonizing residential space and water heating: The case for electrification. In Proceedings of the eceee 2017 Summer Study on Energy Efficiency, 1-329. European Council for an Energy Efficient Economy.
-
5. Shimoda, Y., Sugiyama, M., Nishimoto, R., Momonoki, T. (2021). Evaluating decarbonization scenarios and energy management requirement for the residential sector in Japan through bottom-up simulations of energy end-use demand in 2050. Applied Energy, 303, 117510.
-
6. Kartal, M.A. (2024). Data-driven decarbonization: optimizing p+r in istanbul with machine learning energy modeling and its. Front. Energy Res., 12, 1395814.
-
7. Kartal, M.A. (2024). Contamination in heat exchangers: types, energy effects and prevention methods. IgMin Res., 2(7), 503-507.
-
8. Aslan, E. (2024). Araçlarda CO2 emisyonlarının farklı yapay sinir ağı modelleri kullanılarak tahminlerinin karşılaştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(2), 309-324.
-
9. Butler, D. Caravanning statistics. https://www.finder.com/uk/caravanning-statistics, Access date: 10.11.2022.
-
10. Pitchup.com. Facts and figures. https://www.pitchup.com/about/media/, Access date: 10.11.2022.
-
11. Federation, E.C. Environment. https://www.e-c-f.com/artikel/environment/, Access date: 09.11.2022.
-
12. Bergk, F., Biemann K., Kämper, C., Kräck, J. & Knörr, W. (2020). Klimabilanz von reisen mit reisemobilen und caravans. IFEU, Heidelberg.
-
13. Five eco friendly caravans for a green living on the go. https://ecofriend.com/eco-friendly-caravans-green-living.html, Access date: 09.11.2022.
-
14. Tantekin, A. & Özdil, N.F. (2022). Energy analysis in a solar house with building-integrated photovoltaic (bipv) system. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(3), 685-698.
-
15. Things you should know about water heaters for caravans and motor homes. https://www.truma.com/uk/en/camping-guides/guide-water-heater-caravan, Access date: 10.11.2022.
-
16. Caravan Hot Water Heaters. https://ringhotwater.com.au/product-category/caravan-rv/caravan-hot-water-heaters/, Access date: 11.10.2022.
-
17. Dennis, K. (2015). Environmentally beneficial electrification: electricity as the end-use option. The Electricity Journal, 28(9), 100-112.
-
18. Munuera, L., Bradford, J., Kelly, N. & Hawkes, A. (2013). The role of energy efficiency in decarbonising heat via electrification. Proc. ECEEE 2013 Summer Study on Energy Efficiency, 1159-1164.
-
19. Wei, M., Nelson, J.H., Greenblatt, J.B., Mileva, A., Johnston, J., Ting, M., Yang, C., Jones, C., McMahon, J.E. & Kammen, D.M. (2013). Deep carbon reductions in california require electrification and integration across economic sectors. Environmental Research Letters, 8(1), 014038.
-
20. Kelly, J.A., Fu, M. & Clinch, J.P. (2016). Residential home heating: the potential for air source heat pump technologies as an alternative to solid and liquid fuels. Energy Policy, 98, 431-442.
-
21. Maclean, K., Sansom, R., Watson, T. & Gross, R. (2016). Managing heat system decarbonisation: comparing the impacts and costs of transitions in heat infrastructure. Imperial CollegeCentre for Energy Policy and Technology, 1-62.
-
22. SNET, E. (2016). Final 10-year etip snet r&i roadmap covering 2017-26. European Technology and Innovation Platform Smart Networks for the Energy Transition (ETIP SNET).
-
23. EPA, U. (2016). Inventory of us greenhouse gas emissions and sinks: 1990‐2014. EPA 430‐R‐16‐002. US Environmental Protection Agency Washington, DC, USA.
-
24. U.S. Department of Energy. (2012). 2011 Buildings energy data book. Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy.
-
25. Nehrir, M.H., Jia, R., Pierre, D.A. & Hammerstrom, D.J. (2007). Power management of aggregate electric water heater loads by voltage control. IEEE Power Engineering Society General Meeting, IEEE, 1-6.
-
26. Diao, R., Lu, S., Elizondo, M., Mayhorn, E., Zhang, Y. & Samaan, N. (2012). Electric water heater modeling and control strategies for demand response. IEEE power and energy society general meeting, IEEE, 1-8.
-
27. Aalami, H.A. & Nojavan, S. (2016). Energy storage system and demand response program effects on stochastic energy procurement of large consumers considering renewable generation. IET Generation, Transmission & Distribution, 10(1), 107-114.
-
28. Ahmed, M.S., Mohamed, A., Homod, R.Z., Shareef, H., Sabry, A.H. & Khalid, K.B. (2015). Smart plug prototype for monitoring electrical appliances in home energy management system. IEEE Student Conference on Research and Development (SCOReD), IEEE, 32-36.
-
29. Balke, E.C., Healy, W.M. & Ullah, T. (2016). An assessment of efficient water heating options for an all-electric single family residence in a mixed-humid climate. Energy and Buildings, 133, 371-380.
-
30. Carrington, C., Warrington, D. & Yak, Y. (1985). Structure of domestic hot water consumption. International Journal of Energy Research, 9(1), 65-75.
-
31. Kar, A. & Al-Dossary, K. (1995). Thermal performances of water heaters in series. Applied energy, 52(1), 47-53.
-
32. Becker, B. & Stogsdill, K. (1990). A domestic hot water use database. ASHRAE Journal, 32(9), 21-25.
-
33. Kar, A.K. & Kar, Ü. (1996). Optimum design and selection of residential storage-type electric water heaters for energy conservation. Energy Conversion and Management, 37(9), 1445-1452.
-
34. Kar, A., Yazicioglu, R. & Yazıcıoğlu, O. (2020). Thermal optimization of partitioned electric water heaters for energy conservation. Journal of Energy Research and Reviews, 6(1), 59-73.
-
35. Ahmed, M.S., Mohamed, A., Homod, R.Z., Shareef, H. & Khalid, K. (2016). Modeling of electric water heater and air conditioner for residential demand response strategy. International Journal of Applied Engineering Research, 11(16), 9037-9046.
-
36. Mabina, P.G. & Mukoma, P. (2019). Energy optimization and management of electric water heaters using direct load control. The Southern African Energy Efficiency Confederation Conference (SAEEC), Farm Inn, Silver Lakes, Pretoria.
-
37. Kepplinger, P., Huber, G. & Petrasch, J. (2015). Autonomous optimal control for demand side management with resistive domestic hot water heaters using linear optimization. Energy and Buildings, 100, 50-55.
-
38. Booysen, M., Engelbrecht, J., Ritchie, M., Apperley, M. & Cloete, A. (2019). How much energy can optimal control of domestic water heating save? Energy for Sustainable Development, 51, 73-85.
-
39. Ritchie, M., Engelbrecht, J. & Booysen, M. (2021). A probabilistic hot water usage model and simulator for use in residential energy management. Energy and Buildings, 235, 110727.
-
40. Ritchie, M.J., Engelbrecht, J.A. & Booysen, M.J. (2021). Practically-achievable energy savings with the optimal control of stratified water heaters with predicted usage. Energies, 14(7), 1963.
-
41. Feyzioglu, A. (2012). Development of control strategies and implementation to electrical water heaters for energy conservation. Thesis for the degree of doctor of philosophy in mechanical engineering, Marmara University, Turkey.
-
42. Kondoh, J., Lu, N. & Hammerstrom, D.J. (2011). An evaluation of the water heater load potential for providing regulation service. IEEE Power and Energy Society General Meeting, 1-8.
-
43. Engelbrecht, J., Ritchie, M.J. & Booysen, M. (2021). Optimal schedule and temperature control of stratified water heaters. Energy for Sustainable Development, 62, 67-81.
-
44. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). (1993). ANSI/ASHRAE Standard 90.2-1993: Energy efficient design of low-rise residential buildings. Atlanta, 53-54 (Section 8.9.4, hourly domestic hot water fraction and table 8-4, daily domestic hot water load profile).
-
45. Bouchelle, M.P., Parker, D.S. & Anello, M.T. (2000). Factors influencing water heating energy use and peak demand in a large scale residential monitoring study (FSEC-CR-1671-00). Florida Solar Energy Center, University of Central Florida.
-
46. Perlman, M. & Mills, B. (1985). Development of residential hot water use patterns. ASHRAE Transactions, 91(2A), 657-679.
-
47. Ahmed, K., Pylsy, P. & Kurnitski, J. (2016). Hourly consumption profiles of domestic hot water for different occupant groups in dwellings. Solar Energy, 137, 516-530.
-
48. Fuentes, E., Arce, L. & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews, 81, 1530-1547.
-
49. Fairey, P. & Parker, D. (2004). A review of hot water draw profiles used in performance analysis of residential domestic hot water systems. Florida Solar Energy Center, 2.
-
50. Abdi Hejazi, S. (1989). Sizing a storage type water heating system. ASHRAE Journal, 31(2), 35-40.
-
51. Mínguez, J. M. (1987). Water‐heaters in series. International Journal of Energy Research, 11(1), 145-151.
-
52. Feyzioglu, A. & Kar, A.K. (2016). Development of control strategies and implementation to electrical water heaters for energy conservation. Cybernetics and Information Technologies, 16(4), 98-112.
-
53. Kartal, M.A., Ersoy, S. & Atakök, G. (2024). Cooling and multiphase analysıs of heated environmentally-friendly R152a (c2h4f2) fluid coming from the production process according to nist indicators. Applied Sciences, 14(10), 4143.
-
54. Kartal, M.A. & Feyzioğlu, A. (2024). Experimental comparison and numerical heat analysis of new designed shell and tube-heat exchanger with designed geometry at different baffle intervals: status of energy efficiency. International Journal of Low-Carbon Technologies, 19, 1845-1859.
-
55. Kartal, M.A. & Feyzioğlu, A. (2024). Numerical analysis of altered parallel flow heat exchanger with promoted geometry at multifarious baffle prolongs. Energies, 17, 1676.
-
56. Kartal, M.A. & Feyzioğlu, A. (2023). Numerical analysis of multipurpose shell-tube-heat exchanger withal stylized geometry at different baffle gaps and various flow rates. Case Studies in Thermal Engineering, 52, 103810.
-
57. Türkiye Elektrik Üretim-İletim İstatistikleri. https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri, Access date: 17.10.2022.
-
58. Ureden, A. & Ozden, S. (2018). Kurumsal karbon ayak izi nasıl hesaplanır: teorik bir çalışma. Anadolu Orman Araştırmaları Dergisi, 4(2), 98-108.
-
59. Holloway, S., Akai, M., Pipatti, R. & Rypdal, K. (2006). Carbon dioxide transport, injection and geological storage. IPCC guidelines for national greenhouse gas inventories: Intergovernmental Panel on Climate Change, 2(5), 1-32.
-
60. The Greenhouse Gas Protocol (2015). World Business Council for Sustainable Development, World Resources Institute.
-
61. Türkiye Ulusal Elektrik Şebekesi Emisyon Faktörü (2022). T.C. Enerji ve Tabii Kaynaklar Bakanlığı, Enerji Verimliliği ve Çevre Dairesi Başkanlığı.
-
62. Saidur, R., Masjuki, H.H., Jamaluddin, M. & Ahmed, S. (2007). Energy and associated greenhouse gas emissions from household appliances in malaysia. Energy Policy, 35(3), 1648-1653.