Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Investigation of Propeller Effect on Aerodynamic Performance of a Nonslender Delta Wing

Yıl 2025, Cilt: 40 Sayı: 2, 445 - 452, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1699155

Öz

Propulsion systems are one of the most important components of aircraft that affect their performance. While designing the propulsion system, researchers need to design the position of the propulsion system according to the requirements of the aircraft as well as the choice of materials to be used. In this research, the effects of propeller effects on aerodynamic forces, aerodynamic performance and moment coefficients of a delta wing with NACA 0012 geometry and sweep angle of 50 degrees in tractor and pusher configurations were investigated and compared with no propeller (base) configuration. The tractor configuration provided the highest lift. Sharp stall phenomenon is not observed in pusher configuration. When the drag coefficients are examined, it is seen that the drag of the tractor configuration is higher up to 21 degrees, after 21 degrees the drag coefficient of the pusher configuration increases, but still the aerodynamic performance (L/D) of the tractor configuration is higher than the pusher configuration at 12 degrees where they have the maximum L/D ratio. In the pusher configuration, which reattach the separated flow to the surface, the static stability has slightly increased instability, while in the tractor configuration, abrupt changes are seen depending on the stall angle, which requires more attention to the controller design in UAV design.

Kaynakça

  • 1. Iscold, P., Pereira, G.A.S. & Torres, L.A.B. (2010). Development of a hand-launched small UAV for ground reconnaissance. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 335-348.
  • 2. Murat, M. ve Öztürk, F. (2024). Kısa pistli uçak gemilerinden operasyonel olarak IHA kaldırmak için maliyet etkin bir yaklaşım. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(1), 23-30.
  • 3. Koslowski, R. & Schulzke, M. (2018). Drones along borders: border security UAVs in the united states and the european union. International Studies Perspectives, 19(4), 305-324.
  • 4. Silvagni, M., Tonoli, A., Zenerino, E. & Chiaberge, M. (2017). Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk, 8(1), 18-33.
  • 5. Li, Y., Liu, M. & Jiang, D. (2022). Application of unmanned aerial vehicles in logistics: a literature review. Sustainability, 14(21), 14473.
  • 6. Ullah, F., Al‐Turjman, F., Qayyum, S., Inam, H. & Imran, M. (2021). Advertising through UAVs: optimized path system for delivering smart real‐estate advertisement materials. International Journal of Intelligent Systems, 36(7), 3429-3463.
  • 7. Tsouros, D.C., Bibi, S. & Sarigiannidis, P.G. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349.
  • 8. Kim, S.J., Jeong, Y., Park, S., Ryu, K. & Oh, G. (2018). A survey of drone use for entertainment and AVR (augmented and virtual reality), in augmented reality and virtual reality. Springer International Publishing, Cham, 339-352.
  • 9. Zhang, B., Song, Z., Zhao, F. & Liu, C. (2022). Overview of propulsion systems for unmanned aerial vehicles. Energies, 15(2), 455.
  • 10. Polk, J., Anderson, J., Brophy, J., Rawlin, V., Patterson, M., Sovey, J. & Hamley, J. (1999). An overview of the results from an 8200 hour wear test of the nstar ion thruster. 35th Joint Propulsion Conference and Exhibit.
  • 11. Charles, C. (2009). Plasmas for spacecraft propulsion. Journal of Physics D: Applied Physics, 42(16), 163001.
  • 12. Levchenko, I., Goebel, D., Pedrini, D., Albertoni, R., Baranov, O., Kronhaus, I., Lev, D., Walker, M.L.R., Xu, S. & Bazaka, K. (2025). Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 152, 100900.
  • 13. De Vries, R., Van Arnhem, N., Sinnige, T., Vos, R. & Veldhuis, L.L.M. (2021). Aerodynamic interaction between propellers of a distributed-propulsion system in forward flight. Aerospace Science and Technology, 118, 107009.
  • 14. Shams, T.A., Shah, S.I.A., Shahzad, A., Javed, A. & Mehmod, K. (2020). Experimental investigation of propeller induced flow on flying wing micro aerial vehicle for improved 6dof modeling. IEEE Access, 8, 179626-179647.
  • 15. Ananda Krishnan, G.K., Deters, R.W. & Selig, M.S. (2014). Propeller-induced flow effects on wings of varying aspect ratio at low reynolds numbers. 32nd AIAA Applied Aerodynamics Conference.
  • 16. Ananda, G.K., Selig, M.S. & Deters, R.W. (2018). Experiments of propeller-induced flow effects on a low-reynolds-number wing. AIAA Journal, 56(8), 3279-3294.
  • 17. Catalano, F.M. (2004). On the effects of an installed propeller slipstream on wing aerodynamic characteristics. Acta Polytechnica, 44(3). 8-14.
  • 18. Chinwicharnam, K. & Thipyopas, C. (2016). Comparison of wing–propeller interaction in tractor and pusher configuration. International Journal of Micro Air Vehicles, 8(1), 3-20.
  • 19. Gursul, I. (2005). Review of unsteady vortex flows over slender delta wings. Journal of Aircraft, 42(2), 299-319.
  • 20. Tümse, S. & Bi̇lgi̇li̇, M. (2021). Lift coefficient estimation of a delta wing under the ground effect using artificial neural network. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 625-636.
  • 21. Coleman, H.W. (2018). Experimentation, validation, and uncertainty analysis for engineers. John Wiley & Sons, Incorporated, Newark.
  • 22. Tumse, S., Tasci, M.O., Karasu, I. & Sahin, B. (2021). Effect of ground on flow characteristics and aerodynamic performance of a non-slender delta wing. Aerospace Science and Technology, 110, 106475.
  • 23. Taylor, G.S. & Gursul, I. (2004). Buffeting flows over a low-sweep delta wing. AIAA Journal, 42(9), 1737-1745.
  • 24. Gursul, I., Gordnier, R. & Visbal, M. (2005). Unsteady aerodynamics of nonslender delta wings. Progress in Aerospace Sciences, 41(7), 515-557.

İnce Olmayan Delta Kanadın Aerodinamik Performansına Pervane Etkisinin Deneysel Olarak İncelenmesi

Yıl 2025, Cilt: 40 Sayı: 2, 445 - 452, 02.07.2025
https://doi.org/10.21605/cukurovaumfd.1699155

Öz

İtki sistemleri, hava taşıtlarının performansını etkileyen en önemli bileşenlerden biridir. İtki sistemi tasarlanırken, araştırmacıların kullanılacak malzeme seçiminin yanı sıra itki sisteminin konumunu da hava aracının gereksinimlerine göre tasarlamaları gerekmektedir. Bu çalışmada, NACA 0012 geometrili ve 50 derece süpürme açısına sahip bir delta kanadın çekici ve itici konfigürasyonlarında pervane etkilerinin aerodinamik kuvvetler, aerodinamik performans ve moment katsayıları üzerindeki etkileri incelenmiş ve pervanesiz (baz) konfigürasyon ile karşılaştırılmıştır. Çekici konfigürasyonu en yüksek kaldırma kuvvetini sağlamıştır. İtici konfigürasyonunda keskin stall fenomeni gözlenmemiştir. Sürükleme katsayıları incelendiğinde 21 dereceye kadar traktör konfigürasyonunun sürüklemesinin daha yüksek olduğu, 21 dereceden sonra itici konfigürasyonunun sürükleme katsayısının arttığı ancak yine de maksimum L/D oranına sahip oldukları 12 derecede çekici konfigürasyonunun aerodinamik performansının (L/D) itici konfigürasyonundan daha yüksek olduğu görülmektedir. Ayrılan akışı yüzeye tekrar bağlayan itici konfigürasyonunda statik kararlılık kararsızlığı biraz artırırken, çekici konfigürasyonunda stall açısına bağlı olarak ani değişimler görülmekte, bu da İHA tasarımında kontrolör tasarımına daha fazla dikkat edilmesini gerektirmektedir.

Kaynakça

  • 1. Iscold, P., Pereira, G.A.S. & Torres, L.A.B. (2010). Development of a hand-launched small UAV for ground reconnaissance. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 335-348.
  • 2. Murat, M. ve Öztürk, F. (2024). Kısa pistli uçak gemilerinden operasyonel olarak IHA kaldırmak için maliyet etkin bir yaklaşım. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(1), 23-30.
  • 3. Koslowski, R. & Schulzke, M. (2018). Drones along borders: border security UAVs in the united states and the european union. International Studies Perspectives, 19(4), 305-324.
  • 4. Silvagni, M., Tonoli, A., Zenerino, E. & Chiaberge, M. (2017). Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomatics, Natural Hazards and Risk, 8(1), 18-33.
  • 5. Li, Y., Liu, M. & Jiang, D. (2022). Application of unmanned aerial vehicles in logistics: a literature review. Sustainability, 14(21), 14473.
  • 6. Ullah, F., Al‐Turjman, F., Qayyum, S., Inam, H. & Imran, M. (2021). Advertising through UAVs: optimized path system for delivering smart real‐estate advertisement materials. International Journal of Intelligent Systems, 36(7), 3429-3463.
  • 7. Tsouros, D.C., Bibi, S. & Sarigiannidis, P.G. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349.
  • 8. Kim, S.J., Jeong, Y., Park, S., Ryu, K. & Oh, G. (2018). A survey of drone use for entertainment and AVR (augmented and virtual reality), in augmented reality and virtual reality. Springer International Publishing, Cham, 339-352.
  • 9. Zhang, B., Song, Z., Zhao, F. & Liu, C. (2022). Overview of propulsion systems for unmanned aerial vehicles. Energies, 15(2), 455.
  • 10. Polk, J., Anderson, J., Brophy, J., Rawlin, V., Patterson, M., Sovey, J. & Hamley, J. (1999). An overview of the results from an 8200 hour wear test of the nstar ion thruster. 35th Joint Propulsion Conference and Exhibit.
  • 11. Charles, C. (2009). Plasmas for spacecraft propulsion. Journal of Physics D: Applied Physics, 42(16), 163001.
  • 12. Levchenko, I., Goebel, D., Pedrini, D., Albertoni, R., Baranov, O., Kronhaus, I., Lev, D., Walker, M.L.R., Xu, S. & Bazaka, K. (2025). Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 152, 100900.
  • 13. De Vries, R., Van Arnhem, N., Sinnige, T., Vos, R. & Veldhuis, L.L.M. (2021). Aerodynamic interaction between propellers of a distributed-propulsion system in forward flight. Aerospace Science and Technology, 118, 107009.
  • 14. Shams, T.A., Shah, S.I.A., Shahzad, A., Javed, A. & Mehmod, K. (2020). Experimental investigation of propeller induced flow on flying wing micro aerial vehicle for improved 6dof modeling. IEEE Access, 8, 179626-179647.
  • 15. Ananda Krishnan, G.K., Deters, R.W. & Selig, M.S. (2014). Propeller-induced flow effects on wings of varying aspect ratio at low reynolds numbers. 32nd AIAA Applied Aerodynamics Conference.
  • 16. Ananda, G.K., Selig, M.S. & Deters, R.W. (2018). Experiments of propeller-induced flow effects on a low-reynolds-number wing. AIAA Journal, 56(8), 3279-3294.
  • 17. Catalano, F.M. (2004). On the effects of an installed propeller slipstream on wing aerodynamic characteristics. Acta Polytechnica, 44(3). 8-14.
  • 18. Chinwicharnam, K. & Thipyopas, C. (2016). Comparison of wing–propeller interaction in tractor and pusher configuration. International Journal of Micro Air Vehicles, 8(1), 3-20.
  • 19. Gursul, I. (2005). Review of unsteady vortex flows over slender delta wings. Journal of Aircraft, 42(2), 299-319.
  • 20. Tümse, S. & Bi̇lgi̇li̇, M. (2021). Lift coefficient estimation of a delta wing under the ground effect using artificial neural network. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 625-636.
  • 21. Coleman, H.W. (2018). Experimentation, validation, and uncertainty analysis for engineers. John Wiley & Sons, Incorporated, Newark.
  • 22. Tumse, S., Tasci, M.O., Karasu, I. & Sahin, B. (2021). Effect of ground on flow characteristics and aerodynamic performance of a non-slender delta wing. Aerospace Science and Technology, 110, 106475.
  • 23. Taylor, G.S. & Gursul, I. (2004). Buffeting flows over a low-sweep delta wing. AIAA Journal, 42(9), 1737-1745.
  • 24. Gursul, I., Gordnier, R. & Visbal, M. (2005). Unsteady aerodynamics of nonslender delta wings. Progress in Aerospace Sciences, 41(7), 515-557.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Aerodinamik (Hipersonik Aerodinamik Hariç), Uçak Performansı ve Uçuş Kontrol Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Ertuğrul Bay 0000-0002-5740-7165

Tolgay Kara 0000-0003-3991-8524

Gönderilme Tarihi 15 Mayıs 2025
Kabul Tarihi 26 Haziran 2025
Yayımlanma Tarihi 2 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Bay, A. E., & Kara, T. (2025). Experimental Investigation of Propeller Effect on Aerodynamic Performance of a Nonslender Delta Wing. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(2), 445-452. https://doi.org/10.21605/cukurovaumfd.1699155