Araştırma Makalesi
BibTex RIS Kaynak Göster

Jet Giriş Genişliğinin Isı Transferi ve Akış Yapısına Olan Etkisinin Araştırılması

Yıl 2021, , 331 - 345, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982768

Öz

Bu çalışmada, farklı jet giriş genişliklerindeki kanallarda bulunan düz yamuk ve ters yarım daire şeklinde iki farklı desene sahip bakır plakalı yüzeylerden hava jeti akışı ile olan ısı transferi sayısal olarak araştırılmıştır. Sayısal hesaplamalar, zamandan bağımsız ve üç boyutlu olarak enerji ve Navier-Stokes denklemlerinin k-ε türbülans modelli Ansys-Fluent bilgisayar programı kullanılarak çözülmesiyle gerçekleştirilmiştir. Kanalların üst ve alt yüzeyleri adyabatik olup desenli yüzeylere sabit ısı akısı uygulanmıştır. Jet giriş genişlikleri Dh ve 1,25Dh’dır. Çalışmanın sonuçları, literatürdeki çalışmanın sayısal ve deneysel sonuçlarıyla karşılaştırılmış ve birbirleriyle uyumlu oldukları görülmüştür. Sonuçlar, her bir desenli yüzey için ortalama Nu sayısı ve yüzey sıcaklık değişimi olarak sunulmuştur. Jet ve plaka arası mesafe (H/Dh) 12’de Re=9000 için ters yarım daire desenli yüzeylerin ortalama Nu sayısı, düz yamuk desenli yüzeylerden yaklaşık %56 daha fazladır.

Kaynakça

  • 1. Sharma, S., 2015. Experimental Investigation on Heat Transfer Characteristics from Liquid Jet Impingement to Different Flat Plates, International Journal for Innovative Research in Science & Technology, 1(12), 130-133.
  • 2. Babic, D., Murray, D.B., Torrance, A.A., 2005. Mist Jet Cooling of Grinding Processes, International Journal of Machine Tools and Manufacture, 45, 1171-1177.
  • 3. Royne,, A., Dey, C., 2004. Experimental Study of A JetI Impingement Device for Cooling of Photovoltaic Cells Under High Concentration, ANZSEZ Solar 2004: Life, the Universe and Renewables Congress, Perth, Australia.
  • 4. Narumanchi, S.V.J., Amon, C.H., Murthy, J.Y., 2003. Influence of Pulsating Submerged Liquid Jets on Chip-Level Thermal Phenomena, Transactions of the ASME, 125(3), 354-361.
  • 5. Kercher, D.S., Lee, J.B., Brand, O., Allen, M.G., Glezer, A., 2003. Microjet Cooling Devices for Thermal Management of Electronics, IEEE Transactions on Components and Packaging Technologies, 26(2), 359-366
  • 6. Carlomagno, G.M., Ianiro, A., 2014. Thermo- Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review, Experimental Thermal and Fluid Science, 58, 15-35.
  • 7. Argus, E., Rady, M.A., Nada, S.A., 2006. A Numerical Investigation and Parametric Study of Cooling an Array of Multiple Protruding Heat Sources by A Laminar Slot Air Jet, International Journal of Heat and Mass Transfer, 28, 787-805.
  • 8. Popovac, M., Hanjalic, K., 2007. Large-Eddy Simulation of Flow Over A Jet-impinged Wall Mounted Cube in A Cross Stream, International Journal of Heat and Fluid Flow, 28(6), 1360-1378.
  • 9. Yang, Y.T., Hwang, C.H., 2004. Numerical Simulations on the Hydrodynamics of A Turbulent Slot Jet on A Semi-Cylindrical Convex Surface, Numerical Heat Transfer, 46, 995-1008.
  • 10. Karabulut, K., Alnak, D.E., 2020. Değişik Şekilde Tasarlanan Isıtılmış Yüzeylerin Hava Jeti Çarpmalı Soğutulmasının Araştırılması, Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, 26(1), 88-98.
  • 11. Karabulut, K., 2019. Heat Transfer Improvement Study of Electronic Component Surfaces Using Air Jet Impingement, Journal of Computational Electronics, 18, 1259-1271.
  • 12. Mushatat, K.S., 2007. Analysis of the Turbulent Flow and Heat Transfer of the Impingement Cooling in A Channel with Cross Flow, Engineering Science, 18(2), 101-122.
  • 13. Tepe, A.Ü., 2021. Numerical Investigation of A Novel Jet Hole Design for Staggered Array Jet Impingement Cooling on A Semicircular Concave Surface, International Journal of Thermal Sciences, 162, 106792.
  • 14. Belarbi, A.A., Beriache, M., Bettahar, A., 2018. Experimental Study of Aero-Thermal Heat Sink Performances Subjected to Impinging Air Flow, International Journal of Heat and Technology, 36(4), 1310-1317.
  • 15. Leena, R., Syamkumar, G., Prakash, M.J., 2018. Experimental and Numerical Analyses of Multiple Jets Impingement Cooling for High-power Electronics, IEEE Transactions on Components Packaging and Manufacturing Technology, 8(2), 210-215.
  • 16. Wang, S.J., Mujumdar, A.S., 2005. A Comparative Study of Five Low Reynolds Number k–ε Models for Impingement Heat Transfer. Applied Thermal Engineering, 25, 31-44, 2005.
  • 17. Saleha, N., Fadela, N., Abbes, A., 2015. Improving Cooling Effectiveness by Use Chamfers on the Top of Electronic Components, Microelectronics Reliability, 55, 1067-1076.
  • 18. Kılıç, M., Çalışır, T., Başkaya, Ş., 2017. Experimental and Numerical Study of Heat Transfer from a Heated Flat Plate in a Rectangular Channel with an Impinging Air Jet, Journal of Brazilian Society of Mechanical Sciences and Engineering, 39(1), 329-344.

Search of the Effect of Jet Inlet Width on Heat Transfer and Flow Character

Yıl 2021, , 331 - 345, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982768

Öz

In this study, the heat transfer was numerically researched by air jet flow from copper plate surfaces having different pattern shapes as flat trapezoid and reverse semi-circular in channels with different jet inlet widths. Numerical calculations were performed by solving the energy and Navier-Stokes equations in three dimensions and steady, using the Ansys-Fluent program with standard k-ε turbulence model. The top and bottom facets of the channels are adiabatic and fixed heat flux was implemented to the patterned facets. Jet entrance widths are Dh and 1,25Dh. The results of the study were compared with the numerical and experimental results of the work in the literature and it was obtained that they are compatible with one another. The results were exhibited as the average Nu number and variation of facet temperature for each patterned facet. The average Nu number of reverse semi-circular patterned facets is approximately 56% more than flat trapezoid patterned facets at distance between jet-plate (H/Dh) 12 for Re = 9000.

Kaynakça

  • 1. Sharma, S., 2015. Experimental Investigation on Heat Transfer Characteristics from Liquid Jet Impingement to Different Flat Plates, International Journal for Innovative Research in Science & Technology, 1(12), 130-133.
  • 2. Babic, D., Murray, D.B., Torrance, A.A., 2005. Mist Jet Cooling of Grinding Processes, International Journal of Machine Tools and Manufacture, 45, 1171-1177.
  • 3. Royne,, A., Dey, C., 2004. Experimental Study of A JetI Impingement Device for Cooling of Photovoltaic Cells Under High Concentration, ANZSEZ Solar 2004: Life, the Universe and Renewables Congress, Perth, Australia.
  • 4. Narumanchi, S.V.J., Amon, C.H., Murthy, J.Y., 2003. Influence of Pulsating Submerged Liquid Jets on Chip-Level Thermal Phenomena, Transactions of the ASME, 125(3), 354-361.
  • 5. Kercher, D.S., Lee, J.B., Brand, O., Allen, M.G., Glezer, A., 2003. Microjet Cooling Devices for Thermal Management of Electronics, IEEE Transactions on Components and Packaging Technologies, 26(2), 359-366
  • 6. Carlomagno, G.M., Ianiro, A., 2014. Thermo- Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review, Experimental Thermal and Fluid Science, 58, 15-35.
  • 7. Argus, E., Rady, M.A., Nada, S.A., 2006. A Numerical Investigation and Parametric Study of Cooling an Array of Multiple Protruding Heat Sources by A Laminar Slot Air Jet, International Journal of Heat and Mass Transfer, 28, 787-805.
  • 8. Popovac, M., Hanjalic, K., 2007. Large-Eddy Simulation of Flow Over A Jet-impinged Wall Mounted Cube in A Cross Stream, International Journal of Heat and Fluid Flow, 28(6), 1360-1378.
  • 9. Yang, Y.T., Hwang, C.H., 2004. Numerical Simulations on the Hydrodynamics of A Turbulent Slot Jet on A Semi-Cylindrical Convex Surface, Numerical Heat Transfer, 46, 995-1008.
  • 10. Karabulut, K., Alnak, D.E., 2020. Değişik Şekilde Tasarlanan Isıtılmış Yüzeylerin Hava Jeti Çarpmalı Soğutulmasının Araştırılması, Pamukkale Üniversitesi, Mühendislik Bilimleri Dergisi, 26(1), 88-98.
  • 11. Karabulut, K., 2019. Heat Transfer Improvement Study of Electronic Component Surfaces Using Air Jet Impingement, Journal of Computational Electronics, 18, 1259-1271.
  • 12. Mushatat, K.S., 2007. Analysis of the Turbulent Flow and Heat Transfer of the Impingement Cooling in A Channel with Cross Flow, Engineering Science, 18(2), 101-122.
  • 13. Tepe, A.Ü., 2021. Numerical Investigation of A Novel Jet Hole Design for Staggered Array Jet Impingement Cooling on A Semicircular Concave Surface, International Journal of Thermal Sciences, 162, 106792.
  • 14. Belarbi, A.A., Beriache, M., Bettahar, A., 2018. Experimental Study of Aero-Thermal Heat Sink Performances Subjected to Impinging Air Flow, International Journal of Heat and Technology, 36(4), 1310-1317.
  • 15. Leena, R., Syamkumar, G., Prakash, M.J., 2018. Experimental and Numerical Analyses of Multiple Jets Impingement Cooling for High-power Electronics, IEEE Transactions on Components Packaging and Manufacturing Technology, 8(2), 210-215.
  • 16. Wang, S.J., Mujumdar, A.S., 2005. A Comparative Study of Five Low Reynolds Number k–ε Models for Impingement Heat Transfer. Applied Thermal Engineering, 25, 31-44, 2005.
  • 17. Saleha, N., Fadela, N., Abbes, A., 2015. Improving Cooling Effectiveness by Use Chamfers on the Top of Electronic Components, Microelectronics Reliability, 55, 1067-1076.
  • 18. Kılıç, M., Çalışır, T., Başkaya, Ş., 2017. Experimental and Numerical Study of Heat Transfer from a Heated Flat Plate in a Rectangular Channel with an Impinging Air Jet, Journal of Brazilian Society of Mechanical Sciences and Engineering, 39(1), 329-344.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Doğan Engin Alnak 0000-0003-0126-1483

Koray Karabulut Bu kişi benim 0000-0001-5680-0988

Yayımlanma Tarihi 16 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Alnak, D. E., & Karabulut, K. (2021). Jet Giriş Genişliğinin Isı Transferi ve Akış Yapısına Olan Etkisinin Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(2), 331-345. https://doi.org/10.21605/cukurovaumfd.982768