Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Magnetic Nanoparticles on Biogas Production in Anaerobic Digester

Yıl 2021, Cilt: 36 Sayı: 2, 283 - 296, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982723

Öz

Anaerobic digestion, one of the processes commonly used to stabilize sludge produced in wastewater treatment plants and to generate renewable energy, is a process performed by many groups of microorganisms. Nowadays, advances in nanotechnology, a new field for scientific research, have enabled nanoparticles to be used in many areas. The effects of nanoparticles on methane production and stabilization in anaerobic digesters have become a remarkable issue in recent years. One of the most known and widely used nanoparticles is Fe3O4. In this study, the effects of magnetic nanoparticles, especially Fe3O4 magnetic nanoparticles, on biogas production in anaerobic digesters were investigated by giving information about nanoparticle applications. In addition, Fe3O4 magnetic nanoparticle was synthesized in the laboratory using the co-precipitation method and its magnetic properties were evaluated. After Fe3O4 was synthesized, the effects of Fe3O4 dose on biogas production were investigated by adding different concentrations to anaerobic digesters. Biogas increased with the increase in Fe3O4 concentration, and the average biogas volume in the control devices without Fe3O4 was 428.9 mL, while 572.8 mL biogas was obtained with the addition of 0.3 g/L Fe3O4.

Kaynakça

  • 1. Liu, X., Xu, Q., Wang, D., Zhao, J., Wu, Y., Liu, Y., Ni, B. J., Wang, Q., Zeng, G., Li, X., And Yang, Q., 2018. Improved Methane Production from Waste Activated Sludge by Combining Free Ammonia with Heat Pretreatment: Performance, Mechanisms and Applications. Bioresource Technology, 268, 230–236.
  • 2. Wang, D., Liu, X., Zeng, G., Zhao, J., Liu, Y., Wang, Q., Chen, F., Li, X., Yang, Q., 2018. Understanding the Impact of Cationic Polyacrylamide on Anaerobic Digestion of Waste Activated Sludge. Water Research, 130, 281–290.
  • 3. Ünşar, E.K., Perendeci, N.A., 2016. Nanopartiküllerin Çevresel Akıbetleri ve Anaerobik Parçalanma Prosesine Etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 503–512.
  • 4. Skinner, S.J., Studer, L.J., Dixon, D.R., Hillis, P., Rees, C.A., Wall, R.C., Cavalida, R.G., Usher, S.P., Stickland, A.D., Scales, P.J., 2015. Quantification of Wastewater Sludge Dewatering. Water Research, 82, 2–13.
  • 5. Suanon, F., Sun, Q., Mama, D., Li, J., Dimon, B., Yu, C.P., 2016. Effect of Nanoscale Zero- valent Iron and Magnetite (Fe3O4) on the Fate of Metals During Anaerobic Digestion of Sludge. Water Research, 88, 897–903.
  • 6. Abdelsalam, E., Samer, M., Attia, Y.A., Abdel- Hade, M.A., Hassan, H.E., Badr, Y., 2016. Comparison of Nanoparticles Effects on Biogas and Methane Production from Anaerobic Digestion of Cattle Dung Slurry. Renewable Energy, 87, 592–598.
  • 7. Turan, N.B., Erkan, H.S., Engin, G.O., Bilgili, M.S., 2019. Nanoparticles in the Aquatic Environment: Usage, Properties, Transformation and Toxicity—A Review. Process Safety and Environmental Protection.
  • 8. Ruan, M., Zhang, X., Niu, C., Huang, B., Zhou, L., Zeng, G., Huang, D., 2015. A Feasible Strategy for Promoting Activated Sludge Hydrolysis by Using Ironporphyrin Modified Fe3O4 Nanoparticles as an Efficient Biomimic Catalyst. Chemical Engineering Journal, 280, 248–255.
  • 9. Liu, Y., Zhang, Y., Quan, X., Li, Y., Zhao, Z., Meng, X., Chen, S., 2012. Optimization of Anaerobic Acidogenesis by Adding Fe0 Powder to Enhance Anaerobic Wastewater Treatment. Chemical Engineering Journal, 192, 179–185.
  • 10. Noonari, A.A., Mahar, R.B., Sahito, A.R., Brohi, K.M., 2019. Anaerobic Co-digestion of Canola Straw and Banana Plant Wastes with Buffalo Dung: Effect of Fe3O4 Nanoparticles on Methane Yield. Renewable Energy, 133, 1046–1054.
  • 11. Sezgin, Y., 2013. Çamur Azaltım Tekniklerindeki Yeni Gelişmeler Fotokatalitik Çamur Dezentegrasyonu, Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Tekirdağ, 82.
  • 12. Feng, Y., Zhang, Y., Quan, X., Chen, S., 2014. Enhanced Anaerobic Digestion of Waste Activated Sludge Digestion by the Addition of Zero Valent Iron. Water Research, 52, 242– 250.
  • 13. Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz- Popiel, P., 2009. The Future of Anaerobic Digestion and Biogas Utilization. Bioresource Technology, 100(22), 5478–5484.
  • 14. Wang, X., Yang, G., Feng, Y., Ren, G., Han, X., 2012. Optimizing Feeding Composition and Carbon-nitrogen Ratios for Improved Methane Yield During Anaerobic Co-digestion of Dairy, Chicken Manure and Wheat Straw. Bioresource Technology, 120, 78–83.
  • 15. Yin, D., Liu, W., Zhai, N., Yang, G., Wang, X., Feng, Y., Ren, G., 2014. Anaerobic Digestion of Pig and Dairy Manure Under Photo-dark Fermentation Condition. Bioresource Technology, 166, 373–380.
  • 16. Kelleher, B.P., Leahy, J.J., Henihan, A.M., O’dwyer, T.F., Sutton, D., Leahy, M.J., 2002. Advances in Poultry Litter Disposal Technology-A Review. Bioresource Technology, 83(1), 27–36.
  • 17. Roy, H.S., Satriyo, K.W., Praptiningsih, G.A., Salafudin, Agus, S.Y., Imam, W., Salundik, D., 2014. The Study of Optimization Hydrolysis Substrate Retention Time and Augmentation as an Effort to Increasing Biogas Productivity from Jatropha Curcas Linn. Capsule Husk at Two Stage Digestion, In Energy Procedia., 255–262.
  • 18. El-Mashad, H.M., Van Loon, W.K.P., Zeeman, G., Bot, G.P.A., Lettinga, G., 2003. Reuse Potential of Agricultural Wastes in Semi-arid Regions: Egypt as a Case Study. Reviews in Environmental Science and Biotechnology, 2(1), 53–66.
  • 19. Ravuri, H.K., 2013. Role of Factors Influencing on Anaerobic Process for Production of Bio Hydrogen: Future Fuel. International Journal of Advanced Chemistry, 1(2).
  • 20. Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S., Rana, V., 2004. Enhancement of Biogas Production from Solid Substrates Using Different Techniques-A Review. Bioresource Technology, 95(1), 1–10.
  • 21. Zhang, Z., Guo, L., Wang, Y., Zhao, Y., She, Z., Gao, M., Guo, Y., 2020. Application of Iron Oxide (Fe3O4) Nanoparticles During the Two- stage Anaerobic Digestion with Waste Sludge: Impact on the Biogas Production and the Substrate Metabolism. Renewable Energy, 146, 2724–2735.
  • 22. Gong, L., Yang, X., You, X., Wang, J., Zhou, J., Zhou, Y., Yang, J., 2019. Explore the Effect of Fe3O4 Nanoparticles (NPs) on Anaerobic Digestion of Sludge, Environmental Technology, 42(10),1542-1551.
  • 23. Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hade, M.A., Hassan, H.E., Badr, Y. 2017. Influence of Zero Valent Iron Nanoparticles and Magnetic Iron Oxide Nanoparticles on Biogas and Methane Production from Anaerobic Digestion of Manure. Energy, 120, 842–853.
  • 24. Ni, S-Q, Ni, J., Yang, N., Wang, J., 2013. Effect of Magnetic Nanoparticles on the Performance of Activated Sludge Treatment System. Bioresour Technol., 143, 555-61.
  • 25. Zhang, Y., Jing, Y., Quan, X., Liu, Y., Onu, P., 2011. A Built-in Zero Valent Iron Anaerobic Reactor to Enhance Treatment of Azo Dye Wastewater. Water Science and Technology, 63(4), 741–746.
  • 26. Mu, H., Chen, Y., Xiao, N., 2011. Effects of Metal Oxide Nanoparticles (Tio 2, Al2O3, SiO2 and Zno) on Waste Activated Sludge Anaerobic Digestion. Bioresource Technology, 102(22), 10305–10311.
  • 27. Liu, Y., Zhang, Y., Ni, B.J., 2015. Zero Valent Iron Simultaneously Enhances Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactors. Water Research, 75, 292–300.
  • 28. Eduok, S., Ferguson, R., Jefferson, B., Villa, R., Coulon, F., 2017. Aged-engineered Nanoparticles Effect on Sludge Anaerobic Digestion Performance and Associated Microbial Communities. Science of the Total Environment, 609, 232–241.
  • 29. Ma, F., Lu, X., Wang, S., Wang, H., Zhao, G., 2018. Improved Process Performance of the Acidification Phase in a Two-stage Anaerobic Digestion of Complex Organic Waste: Effects of an Iron Oxide-zeolite Additive. Bioresource Technology, 262(April), 169–176.
  • 30. Zhang, Y., Yang, Z., Xu, R., Xiang, Y., Jia, M., Hu, J., Zheng, Y., 2019. Enhanced Mesophilic Anaerobic Digestion of Waste Sludge with the Ironnanoparticles Addition and Kinetic Analysis. Science of the Total Environment, 683, 124–133.
  • 31. Romero-Güiza, M., Zahedi, S., Monsalvo, V., Icaran, P., Pijuan, M., 2019. Nitrite and Free Nitrous Acid Sludge Pre-treatments to Enhance Methane Production in Continuous Anaerobic Digestion: Comparing Process Performance and Associated Costs. Waste Management, 95, 526–534.
  • 32. Casals, E., Barrena, R., García, A., González, E., Delgado, L., Busquets-Fité, M., Font, X., Arbiol, J., Glatzel, P., Kvashnina, K., Sánchez, A., Puntes, V., 2014. Programmed Iron Oxide Nanoparticles Disintegration in Anaerobic Digesters Boosts Biogas Production. Small, 10(14), 2801–2808.
  • 33. Goyal, P., Chakraborty, S., Misra, S.K., 2018. Multifunctional Fe3O4-Zno Nanocomposites for Environmental Remediation Applications. Environmental Nanotechnology, Monitoring and Management, 10(March), 28–35.
  • 34. Demirel, B., Scherer, P., 2011. Trace Element Requirements of Agricultural Biogas Digesters During Biological Conversion of Renewable Biomass to Methane. Biomass and Bioenergy, 35(3), 992–998.
  • 35. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., Puntes, V., 2009. Evaluation of the Ecotoxicity of Model Nanoparticles. Chemosphere, 75(7), 850–857.
  • 36. Ateş, N., 2020. Manyetik Nanopartiküllerin Anaerobik Çürütme Performansına Etkileri, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Harran Üniversitesi, Şanlıurfa, 89.
  • 37. Demir, Ö., 2018. Synthesis of Fe3O4 Magnetic Nanoparticles and its Applicationın Catalytic Degradation of Sulfamethoxazole in Water. J.Chem.Soc.Pak., 40(01), 111–122.
  • 38. APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st Ed.; Apha: Washington, Dc, Usa, 2005. American Water Works Association/American Public Works Association/Water Environment Federation.
  • 39. Ünşar, E.K., 2018. What Kind of Effects do Fe2O3 and Al2O3 Nanoparticles Have on Anaerobic Digestion, Inhibition or Enhancement?, 211, 726–735.
  • 40. Zhang, Y., Jing, Y., Zhang, J., Sun, L., Quan, X., 2011. Performance of a Zvı-uasb Reactor for Azo Dye Wastewater Treatment. Journal of Chemical Technology and Biotechnology, 86(2), 199–204.
  • 41. Gupta, V.K., Nayak, A., 2012. Cadmium Removal and Recovery from Aqueous Solutions By Novel Adsorbents Prepared from Orange Peel and Fe2O3 Nanoparticles. Chemical Engineering Journal, 180, 81–90
  • 42. Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agarwal, S., Maity, A., Gupta, V.K., 2015. Modeling of Competitive Ultrasonic Assisted Removal of the Dyes-Methylene Blue and Safranin-O using Fe3O4 Nanoparticles. Chemical Engineering Journal, 268, 28–37.
  • 43. Hattori, S., Watanabe, M., Osono, H., Togii, H., Sasaki, K., 2001. Effects of an External Magnetic Field on the Flock Size and Sedimentation of Activated Sludge. World Journal of Microbiology and Biotechnology, 17(9), 833–838.
  • 44. Ozaki, H., Liu, Z., Terashima, Y., 1991. Utilization of Microorganisms Immobilized with Magnetic Particles for Sewage and Wastewater Treatment, in Water Science and Technology., 1125–1136.
  • 45. Hao, W., Li, Y., Lv, J., Chen, L., Zhu, J., 2016. the Biological Effect of Metal Ions on the Granulation of Aerobic Granular Activated Sludge. Journal of Environmental Sciences (China), 44, 252–259.
  • 46. Chen, Y., Ren, X., Gao, M., Zhao, Y., Guo, L., Shao, M., She, Z., 2018. The Influence of Fe2+, Fe3+ and Magnet Powder (Fe3O4) on Aerobic Granulation and Their Mechanisms. Ecotoxicology and Environmental Safety, 164(August), 1–11.
  • 47. Yang, Y., Zhang, C., Hu, Z., 2013. Impact of Metallic and Metal Oxide Nanoparticles on Wastewater Treatment and Anaerobic Digestion. Environmental Sciences: Processes and Impacts, 15(1), 39–48.

Manyetik Nanopartiküllerin Anaerobik Çürütücüde Biyogaz Üretimi Üzerine Etkileri

Yıl 2021, Cilt: 36 Sayı: 2, 283 - 296, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982723

Öz

Atıksu arıtma tesislerinde üretilen çamurun stabilizasyonu ve yenilenebilir enerji üretmek için yaygın olarak kullanılan işlemlerden biri olan anaerobik çürütme, birçok mikroorganizma grubu tarafından gerçekleştirilen bir işlemdir. Günümüzde, bilimsel araştırmalar için yeni bir alan olan nanoteknolojideki gelişmeler, nanopartiküllerin birçok alanda kullanılmasını sağlamıştır. Nanopartikülleri anaerobik çürütücülerdeki metan üretimi ve stabilizasyon üzerine etkileri son yıllarda dikkat çeken bir konu haline gelmiştir. En bilinen ve yaygın olarak kullanılan nanopartüküllerden biri Fe3O4’tir. Bu çalışmada, nanopartikül uygulamaları hakkında bilgi verilerek ve manyetik nanopartiküllerin, özellikle de Fe3O4 manyetik nanopartiküllerinin anaerobik çürütücüde biyogaz üretimi üzerine etkileri ile araştırılmıştır. Ayrıca, laboratuvar ortamında, birlikte çökeltme yöntemi ile Fe3O4 manyetik nanopartikülü sentezlenmiş ve manyetik özellikleri değerlendirilmiştir. Fe3O4 sentezlendikten sonra farklı konsantrasyonlarda anaerobik çürütücülere ilave edilerek Fe3O4 dozunun biyogaz üretimi üzerindeki etkileri incelenmiştir. Fe3O4 konsantrasyonu artması ile biyogaz artışı görülmüş ve Fe3O4 kullanılmayan kontrol düzeneklerindeki ortalama biyogaz hacmi 428,9 mL iken 0,3 g/L Fe3O4 ilavesinde 572,8 mL biyogaz elde edilmiştir.

Kaynakça

  • 1. Liu, X., Xu, Q., Wang, D., Zhao, J., Wu, Y., Liu, Y., Ni, B. J., Wang, Q., Zeng, G., Li, X., And Yang, Q., 2018. Improved Methane Production from Waste Activated Sludge by Combining Free Ammonia with Heat Pretreatment: Performance, Mechanisms and Applications. Bioresource Technology, 268, 230–236.
  • 2. Wang, D., Liu, X., Zeng, G., Zhao, J., Liu, Y., Wang, Q., Chen, F., Li, X., Yang, Q., 2018. Understanding the Impact of Cationic Polyacrylamide on Anaerobic Digestion of Waste Activated Sludge. Water Research, 130, 281–290.
  • 3. Ünşar, E.K., Perendeci, N.A., 2016. Nanopartiküllerin Çevresel Akıbetleri ve Anaerobik Parçalanma Prosesine Etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 503–512.
  • 4. Skinner, S.J., Studer, L.J., Dixon, D.R., Hillis, P., Rees, C.A., Wall, R.C., Cavalida, R.G., Usher, S.P., Stickland, A.D., Scales, P.J., 2015. Quantification of Wastewater Sludge Dewatering. Water Research, 82, 2–13.
  • 5. Suanon, F., Sun, Q., Mama, D., Li, J., Dimon, B., Yu, C.P., 2016. Effect of Nanoscale Zero- valent Iron and Magnetite (Fe3O4) on the Fate of Metals During Anaerobic Digestion of Sludge. Water Research, 88, 897–903.
  • 6. Abdelsalam, E., Samer, M., Attia, Y.A., Abdel- Hade, M.A., Hassan, H.E., Badr, Y., 2016. Comparison of Nanoparticles Effects on Biogas and Methane Production from Anaerobic Digestion of Cattle Dung Slurry. Renewable Energy, 87, 592–598.
  • 7. Turan, N.B., Erkan, H.S., Engin, G.O., Bilgili, M.S., 2019. Nanoparticles in the Aquatic Environment: Usage, Properties, Transformation and Toxicity—A Review. Process Safety and Environmental Protection.
  • 8. Ruan, M., Zhang, X., Niu, C., Huang, B., Zhou, L., Zeng, G., Huang, D., 2015. A Feasible Strategy for Promoting Activated Sludge Hydrolysis by Using Ironporphyrin Modified Fe3O4 Nanoparticles as an Efficient Biomimic Catalyst. Chemical Engineering Journal, 280, 248–255.
  • 9. Liu, Y., Zhang, Y., Quan, X., Li, Y., Zhao, Z., Meng, X., Chen, S., 2012. Optimization of Anaerobic Acidogenesis by Adding Fe0 Powder to Enhance Anaerobic Wastewater Treatment. Chemical Engineering Journal, 192, 179–185.
  • 10. Noonari, A.A., Mahar, R.B., Sahito, A.R., Brohi, K.M., 2019. Anaerobic Co-digestion of Canola Straw and Banana Plant Wastes with Buffalo Dung: Effect of Fe3O4 Nanoparticles on Methane Yield. Renewable Energy, 133, 1046–1054.
  • 11. Sezgin, Y., 2013. Çamur Azaltım Tekniklerindeki Yeni Gelişmeler Fotokatalitik Çamur Dezentegrasyonu, Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Tekirdağ, 82.
  • 12. Feng, Y., Zhang, Y., Quan, X., Chen, S., 2014. Enhanced Anaerobic Digestion of Waste Activated Sludge Digestion by the Addition of Zero Valent Iron. Water Research, 52, 242– 250.
  • 13. Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz- Popiel, P., 2009. The Future of Anaerobic Digestion and Biogas Utilization. Bioresource Technology, 100(22), 5478–5484.
  • 14. Wang, X., Yang, G., Feng, Y., Ren, G., Han, X., 2012. Optimizing Feeding Composition and Carbon-nitrogen Ratios for Improved Methane Yield During Anaerobic Co-digestion of Dairy, Chicken Manure and Wheat Straw. Bioresource Technology, 120, 78–83.
  • 15. Yin, D., Liu, W., Zhai, N., Yang, G., Wang, X., Feng, Y., Ren, G., 2014. Anaerobic Digestion of Pig and Dairy Manure Under Photo-dark Fermentation Condition. Bioresource Technology, 166, 373–380.
  • 16. Kelleher, B.P., Leahy, J.J., Henihan, A.M., O’dwyer, T.F., Sutton, D., Leahy, M.J., 2002. Advances in Poultry Litter Disposal Technology-A Review. Bioresource Technology, 83(1), 27–36.
  • 17. Roy, H.S., Satriyo, K.W., Praptiningsih, G.A., Salafudin, Agus, S.Y., Imam, W., Salundik, D., 2014. The Study of Optimization Hydrolysis Substrate Retention Time and Augmentation as an Effort to Increasing Biogas Productivity from Jatropha Curcas Linn. Capsule Husk at Two Stage Digestion, In Energy Procedia., 255–262.
  • 18. El-Mashad, H.M., Van Loon, W.K.P., Zeeman, G., Bot, G.P.A., Lettinga, G., 2003. Reuse Potential of Agricultural Wastes in Semi-arid Regions: Egypt as a Case Study. Reviews in Environmental Science and Biotechnology, 2(1), 53–66.
  • 19. Ravuri, H.K., 2013. Role of Factors Influencing on Anaerobic Process for Production of Bio Hydrogen: Future Fuel. International Journal of Advanced Chemistry, 1(2).
  • 20. Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S., Rana, V., 2004. Enhancement of Biogas Production from Solid Substrates Using Different Techniques-A Review. Bioresource Technology, 95(1), 1–10.
  • 21. Zhang, Z., Guo, L., Wang, Y., Zhao, Y., She, Z., Gao, M., Guo, Y., 2020. Application of Iron Oxide (Fe3O4) Nanoparticles During the Two- stage Anaerobic Digestion with Waste Sludge: Impact on the Biogas Production and the Substrate Metabolism. Renewable Energy, 146, 2724–2735.
  • 22. Gong, L., Yang, X., You, X., Wang, J., Zhou, J., Zhou, Y., Yang, J., 2019. Explore the Effect of Fe3O4 Nanoparticles (NPs) on Anaerobic Digestion of Sludge, Environmental Technology, 42(10),1542-1551.
  • 23. Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hade, M.A., Hassan, H.E., Badr, Y. 2017. Influence of Zero Valent Iron Nanoparticles and Magnetic Iron Oxide Nanoparticles on Biogas and Methane Production from Anaerobic Digestion of Manure. Energy, 120, 842–853.
  • 24. Ni, S-Q, Ni, J., Yang, N., Wang, J., 2013. Effect of Magnetic Nanoparticles on the Performance of Activated Sludge Treatment System. Bioresour Technol., 143, 555-61.
  • 25. Zhang, Y., Jing, Y., Quan, X., Liu, Y., Onu, P., 2011. A Built-in Zero Valent Iron Anaerobic Reactor to Enhance Treatment of Azo Dye Wastewater. Water Science and Technology, 63(4), 741–746.
  • 26. Mu, H., Chen, Y., Xiao, N., 2011. Effects of Metal Oxide Nanoparticles (Tio 2, Al2O3, SiO2 and Zno) on Waste Activated Sludge Anaerobic Digestion. Bioresource Technology, 102(22), 10305–10311.
  • 27. Liu, Y., Zhang, Y., Ni, B.J., 2015. Zero Valent Iron Simultaneously Enhances Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactors. Water Research, 75, 292–300.
  • 28. Eduok, S., Ferguson, R., Jefferson, B., Villa, R., Coulon, F., 2017. Aged-engineered Nanoparticles Effect on Sludge Anaerobic Digestion Performance and Associated Microbial Communities. Science of the Total Environment, 609, 232–241.
  • 29. Ma, F., Lu, X., Wang, S., Wang, H., Zhao, G., 2018. Improved Process Performance of the Acidification Phase in a Two-stage Anaerobic Digestion of Complex Organic Waste: Effects of an Iron Oxide-zeolite Additive. Bioresource Technology, 262(April), 169–176.
  • 30. Zhang, Y., Yang, Z., Xu, R., Xiang, Y., Jia, M., Hu, J., Zheng, Y., 2019. Enhanced Mesophilic Anaerobic Digestion of Waste Sludge with the Ironnanoparticles Addition and Kinetic Analysis. Science of the Total Environment, 683, 124–133.
  • 31. Romero-Güiza, M., Zahedi, S., Monsalvo, V., Icaran, P., Pijuan, M., 2019. Nitrite and Free Nitrous Acid Sludge Pre-treatments to Enhance Methane Production in Continuous Anaerobic Digestion: Comparing Process Performance and Associated Costs. Waste Management, 95, 526–534.
  • 32. Casals, E., Barrena, R., García, A., González, E., Delgado, L., Busquets-Fité, M., Font, X., Arbiol, J., Glatzel, P., Kvashnina, K., Sánchez, A., Puntes, V., 2014. Programmed Iron Oxide Nanoparticles Disintegration in Anaerobic Digesters Boosts Biogas Production. Small, 10(14), 2801–2808.
  • 33. Goyal, P., Chakraborty, S., Misra, S.K., 2018. Multifunctional Fe3O4-Zno Nanocomposites for Environmental Remediation Applications. Environmental Nanotechnology, Monitoring and Management, 10(March), 28–35.
  • 34. Demirel, B., Scherer, P., 2011. Trace Element Requirements of Agricultural Biogas Digesters During Biological Conversion of Renewable Biomass to Methane. Biomass and Bioenergy, 35(3), 992–998.
  • 35. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., Puntes, V., 2009. Evaluation of the Ecotoxicity of Model Nanoparticles. Chemosphere, 75(7), 850–857.
  • 36. Ateş, N., 2020. Manyetik Nanopartiküllerin Anaerobik Çürütme Performansına Etkileri, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Harran Üniversitesi, Şanlıurfa, 89.
  • 37. Demir, Ö., 2018. Synthesis of Fe3O4 Magnetic Nanoparticles and its Applicationın Catalytic Degradation of Sulfamethoxazole in Water. J.Chem.Soc.Pak., 40(01), 111–122.
  • 38. APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st Ed.; Apha: Washington, Dc, Usa, 2005. American Water Works Association/American Public Works Association/Water Environment Federation.
  • 39. Ünşar, E.K., 2018. What Kind of Effects do Fe2O3 and Al2O3 Nanoparticles Have on Anaerobic Digestion, Inhibition or Enhancement?, 211, 726–735.
  • 40. Zhang, Y., Jing, Y., Zhang, J., Sun, L., Quan, X., 2011. Performance of a Zvı-uasb Reactor for Azo Dye Wastewater Treatment. Journal of Chemical Technology and Biotechnology, 86(2), 199–204.
  • 41. Gupta, V.K., Nayak, A., 2012. Cadmium Removal and Recovery from Aqueous Solutions By Novel Adsorbents Prepared from Orange Peel and Fe2O3 Nanoparticles. Chemical Engineering Journal, 180, 81–90
  • 42. Ghaedi, M., Hajjati, S., Mahmudi, Z., Tyagi, I., Agarwal, S., Maity, A., Gupta, V.K., 2015. Modeling of Competitive Ultrasonic Assisted Removal of the Dyes-Methylene Blue and Safranin-O using Fe3O4 Nanoparticles. Chemical Engineering Journal, 268, 28–37.
  • 43. Hattori, S., Watanabe, M., Osono, H., Togii, H., Sasaki, K., 2001. Effects of an External Magnetic Field on the Flock Size and Sedimentation of Activated Sludge. World Journal of Microbiology and Biotechnology, 17(9), 833–838.
  • 44. Ozaki, H., Liu, Z., Terashima, Y., 1991. Utilization of Microorganisms Immobilized with Magnetic Particles for Sewage and Wastewater Treatment, in Water Science and Technology., 1125–1136.
  • 45. Hao, W., Li, Y., Lv, J., Chen, L., Zhu, J., 2016. the Biological Effect of Metal Ions on the Granulation of Aerobic Granular Activated Sludge. Journal of Environmental Sciences (China), 44, 252–259.
  • 46. Chen, Y., Ren, X., Gao, M., Zhao, Y., Guo, L., Shao, M., She, Z., 2018. The Influence of Fe2+, Fe3+ and Magnet Powder (Fe3O4) on Aerobic Granulation and Their Mechanisms. Ecotoxicology and Environmental Safety, 164(August), 1–11.
  • 47. Yang, Y., Zhang, C., Hu, Z., 2013. Impact of Metallic and Metal Oxide Nanoparticles on Wastewater Treatment and Anaerobic Digestion. Environmental Sciences: Processes and Impacts, 15(1), 39–48.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özlem Demir Bu kişi benim 0000-0002-0727-1845

Nurcan Ateş Bu kişi benim

Yayımlanma Tarihi 16 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 2

Kaynak Göster

APA Demir, Ö., & Ateş, N. (2021). Manyetik Nanopartiküllerin Anaerobik Çürütücüde Biyogaz Üretimi Üzerine Etkileri. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(2), 283-296. https://doi.org/10.21605/cukurovaumfd.982723