Araştırma Makalesi
BibTex RIS Kaynak Göster

Değiştirilmiş Bir Naca Kanat Geometrisinin Akış ve Mekanik Özellikleri

Yıl 2021, Cilt: 36 Sayı: 3, 815 - 825, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005807

Öz

Uçma yeteneği doğrudan kanat geometrisinin yapısı ile ilgilidir. Kanat yapısı her çalışma koşuluna göre farklı tasarlanmaktadır. Bu çalışmada, serbest biçimli bir kanat profili kesiti tasarlanmış ve modelin akış etkisi altındaki davranışı dalış ve kalkış açıları açısından incelenmiştir. Analizde hesaplamalı akışkanlar dinamiği yöntemi kullanılmıştır. Yöntemin duyarlılığı, bir NACA kanat profili kesitinin çözümü literatürdeki deneysel sonuçlarla karşılaştırılarak kontrol edilmiş ve çalışmada kullanılabilirliği kabul edilmiştir. Ayrıca çalışmada kanat geometrisi 3 boyutlu ve katmanlı olarak modellenmiş ve mekanik özellikleri incelenmiştir. Tasarlanan kanat profili, kaldırma yönünde daha baskın akış yapısına sahiptir. Simetrik olmayan kanat profili, simetrik olmayan Cl-Cd dağılımına neden olur. Kanat yapısının kaldırmada daha baskın olması sonucunda, pozitif hücum açısının deformasyon ve gerilme sonuçları negatif sonuçlara göre daha fazla olduğu gözlemlendi. Hücum açısına bağlı olarak kanat üzerindeki basınç ve akış etkileri daha yüksek eğilme-burulma etkisine neden olmuş ve kanadın sabitleme bölgesinde gerilmeleri arttırmıştır. En düşük deformasyon ve ortalama gerilmeler -4° hücum açısında meydana gelmiştir. Sonuçlar akış ve mekanik bulgular neticesinde tartışılmıştır

Kaynakça

  • 1. Zakaria, M.Y., Ibrahim, M.M., Ragab, S., Hajj, M.R., 2018. A Computational Study of Vortex Shedding from a NACA-0012 Airfoil at High Angles of Attack. International Journal of Aerodynamics, 6(1), 1-17.
  • 2. Rao, T.S., Mahapatra, T., Mangavelli, S.C., 2018. Enhancement of Lift-drag Characteristics of NACA 0012. Materials Today: Proceedings, 5(2), 5328-5337.
  • 3. Fatahian, E., Nichkoohi, A.L., Salarian, H., Khaleghinia, J., 2020. Effects of the Hinge Position and Suction on Flow Separation and Aerodynamic Performance of the NACA 0012 Airfoil. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(86).
  • 4. Kadhem, H.A., Hussein, A.A., 2019. The Effect of Wind Velocity on the Suppression of Composite Wing Airfoil NACA 0012. Al-Khwarizmi Engineering Journal, 15(3), 38- 44.
  • 5. Yu, Y., Lyu, Z., Xu, Z., Martins, J.R.R.A., 2018. On the Influence of Optimization Algorithm and Initial Design on Wing Aerodynamic Shape Optimization. Aerospace Science and Technology, 75, 183-199.
  • 6. Hanna, Y.G.T., Spedding, G.R., Aerodynamic Performance Improvements Due to Porosity in Wings at Moderate Re. AIAA Aviation 2019 Forum, 17-21 June 2019, Dallas, Texas.
  • 7. Stanford, B.K., Jocobson, K.E., Massey, S.J., Transonic Aeroelastic Modeling of the NACA 0012 Benchmark Wing. AIAA Aviation 2020 Forum, June 15-19, 2020, Virtual Event, Session: Aerodynamic-Structural Dynamics Interaction, AIAA, 2020-2716.
  • 8. Yan, B.K., 2018. Flutter Analysis of a Flexibly Supported Wing. Doctor of Philosophy Thesis, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, January 2018.
  • 9. Hasnaoui, M., Naamane, A., Akhmari, H., 2019. Asymptotic Modeling the Aerodynamic Coefficients of the NACA Airfoil. Modelling, Measurement and Control B, 88(2-4), 58-66.
  • 10. Körpe, D.S., Kanat, Ö.Ö., Oktay, T., 2019. The Effects of Initial y plus: Numerical Analysis of 3D NACA 4412 Wing Using γ-Reθ SST Turbulence Model. European Journal of Science and Technology, 17, 692-702.
  • 11. Kumar, B.R., 2019. Enhancing Aerodynamic Performance of NACA 4412 Aircraft Wing Using Leading Edge Modification. Wind and Structures, 29(4), 271-277.
  • 12. Halima, Z., Djilali, B., 2018. Aeroelastic Analysis of an Aircraft Wing Type NACA 4412 with Reduced Scale. International Journal of Modeling and Optimization, 8(4), 241-245.
  • 13. Gore, K., Gote, A., Govale, A., Kanawade, A., Humane, S., 2018. Aerodynamic Analysis of Aircraft Wings Using CFD. International Research Journal of Engineering and Technology (IRJET), 5(6), 639-644.
  • 14. Gloutak, D.A., Farnsworth, J.A., 2020. Characteristic Wing Measurements of a NACA 0015 in Steady and Unsteady Surging Wind Tunnel Flow. AIAA 2020-1558 Session: Special Session: Surging and Surging/Pitching Aerodynamics II.
  • 15. Movahedian, A., Pasandidehfard, M., Roohi, E., 2019. LES Investigation of Sheet-Cloud Cavitation around a 3-D Twisted Wing with a NACA 16012 Hydrofoil. Ocean Engineering, 192(106547), 1-13.
  • 16. Dent, J., Robson, J., Basso, A., Ellin, A., Prakash, A., Hamad, F., 2019. Computational Study of Aerodynamic Performance and Flow Structure Around NACA 23012 Wing. International Journal of Aerodynamics (Accepted/In press)
  • 17.Ismail, N.A., Kaisan, M.U., Balogun, M.B., Abdullahi, M.B., Faru, F.T., Ibrahim, I.U., 2020. Effect of Angle of Attack on Lift, Drag, Pitching Moment and Pressure Distribution of NACA 4415 Wing. Journal of Science Technology and Education, 8(1), 31-44.
  • 18. Fatahian, E., Nichkoohi, A.L., Fatahian, H., 2019. Numerical Study of the Effect of Suction at a Compressible and High Reynolds Number Flow to Control the Flow Separation Over NACA 2415 Airfoil. Progress in Computational Fluid Dynamics, 19(3), 170-179.
  • 19. Eken, S., 2019. Free Vibration Analysis of Composite Aircraft Wings Modeled as Thin-Walled Beams with NACA Airfoil Sections. Thin-Walled Structures, 139, 362-371.
  • 20. Viglietti, A., Zappino, E., Carrera, E., 2019. Free Vibration Analysis of Variable Angle-tow Composite Wing Structures. Aerospace Science and Technology, 92, 114-125.
  • 21. Wang, A., Ouyang, H., Xie, H., Wu, Y., 2019. Experimental Investigation on a Single NACA Airfoil’s Nonlinear Aeroelasticity in Wake Induced Vibrations. Fluid Dynamics, 54(4), 535–549.
  • 22.Bogrekci, I., Demircioglu, P., Sucuoglu, H.S., Guven, E., Demir, N., Durakbasa, M.N., 2019. Structural and Modal Analyses of NACA 66-206 Aircraft Wing Model. Proceedings of the International Symposium for Production Research.
  • 23. Kulshreshtha, A., Gupta, S.K., Singhal, P., 2020. FEM/CFD Analysis of Wings at Different Angle of Attack. Materials Today: Proceeedings, 26(2), 1638-1643.
  • 24. Triet, N.M., Viet, N.N., Thang, P.M., 2015. Aerodynamic Analysis of Aircraft Wing. VNU Journal of Science: Mathematics-physics, 31(2), 68-75.
  • 25. Perera, M., He, Y., Guo, S., 2010. Structural and Dynamic Analysis of a Seamless Aeroelastic Wing. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 12 April 2010-15 April 2010, Orlando, Florida.
  • 26. Perera, M., Guo, S., 2009. Optimal Design of an Aeroelastic Wing Structure with Seamless Control Surfaces. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(8), 1141-1151.
  • 27. Newman, J.C., Newman, P.A., Taylor, A.C., Hou, G.J.W., 1999. Efficient Nonlinear Static Aeroelastic Wing Analysis. Computers & Fluids, 28, 615-628.
  • 28. Alyanak, E.J., Pendleton, E., 2014. A Design Study Employing Aeroelastic Tailoring and an Active Aeroelastic Wing Design Approach on a Tailless Lambda Wing Configuration, 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 16-20 June 2014, Atlanta, GA.
  • 29. Hou, G., Satyanarayana, A., 2000. Analytical Sensitivity Analysis of a Static Aeroelastic Wing. 8th Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, U.S.A. 2000.
  • 30.Reich, G.W., Raveh, D.E., Zink, P.S., 2004. Application of Active-aeroelastic-wing Technology to a Joined-wing Sensorcraft. Journal of Aircraft, 41(3), 594-602.
  • 31. Zink, P.S., Raveh, D.E., Mavris, D.N., 2004. Robust Structural Design of an Active Aerolastic Wing with Maneuver Load Inaccuracies. Journal of Aircraft, 41(3), 585-593.
  • 32. Guo, S., 2007. Aeroelastic Optimization of an Aerobatic Aircraft Wing Structure. Aerospace Science and Technology, 11, 396–404.
  • 33. Stanford, B.K., 2016. Static and Dynamic Aeroelastic Tailoring with Variable-camber Control. Journal of Guidance, Control, and Dynamics, 39(11), 2522-2534.
  • 34. Szollosi, A., Baranyi, P., 2017. Improved Control Performance of the 3-Dof Aeroelastic Wing Section: A Tip Model Based 2d Parametric Control Performance Optimization. Asian Journal of Control, 19(2), 450–466.
  • 35. Abbott, I.H., Von Doenhoff, A.E., 1959. Theory of Wing Sections-including a Summary of Airfoil Data, Dover Publications, New York.
  • 36. Haque, M.N., Ali, M., Ara, I., 2015. Experimental Investigation on the Performance of NACA 4412 Aerofoil with Curved Leading Edge Planform. Procedia Engineering, 105, 232–240.
  • 37. Yagmur, S., Dogan, S., Aksoy, M.H., Goktepeli, I., 2020. Turbulence Modeling Approaches on Unsteady Flow Structures around a Semi-circular Cylinder. Ocean Engineering, 200, 107051.
  • 38. McAlister, K.W., Takahaski, R.K., 1991. NACA 0015 Wing Pressure and Trailing Vortex Measurements, NASA Technical Paper 3151.
  • 39.Rubel, R.I., Uddin, M.K., Islam, M.Z., Rokunuzzaman, M., 2017. Comparison of Aerodynamics Characteristics of NACA 0015 & NACA 4415 Aerofoil Blade. International Journal of Research-granthaalayah, 5(11), 187–197.

Flow and Mechanical Characteristics of a Modified Naca Wing Geometry

Yıl 2021, Cilt: 36 Sayı: 3, 815 - 825, 30.09.2021
https://doi.org/10.21605/cukurovaumfd.1005807

Öz

The flying ability is directly related to the structure of the wing geometry. The wing structure is designed differently according to each working conditions. In this study, a free-formed airfoil section was designed and the behaviour of the model under the influence of flow was investigated in terms of diving and takeoff angles. Computational fluid dynamics method was used in the analysis. The sensitivity of the method was checked by comparing the solution of a NACA airfoil section with the experimental results in the literature and its usability in the study was accepted. Also, in the study, the wing geometry was modelled as 3D and layered, and its mechanical properties were examined. The designed airfoil has more dominant
flow structure in the lift direction. Non-symmetrical airfoil causes unsymmetrical Cl-Cd distribution. As a result of the wing structure being more dominant in lift, it was observed that the deformation and stress results of the positive angle of attack were higher than the negative results. Depending on the angle of attack, the pressure and flow effects on the wing caused a higher bending-torsion effect and increased the stresses in the fixation region of the wing. The lowest deformation and average stresses occurred at -4° angle of attack. The results are discussed as a result of flow and mechanical findings.

Kaynakça

  • 1. Zakaria, M.Y., Ibrahim, M.M., Ragab, S., Hajj, M.R., 2018. A Computational Study of Vortex Shedding from a NACA-0012 Airfoil at High Angles of Attack. International Journal of Aerodynamics, 6(1), 1-17.
  • 2. Rao, T.S., Mahapatra, T., Mangavelli, S.C., 2018. Enhancement of Lift-drag Characteristics of NACA 0012. Materials Today: Proceedings, 5(2), 5328-5337.
  • 3. Fatahian, E., Nichkoohi, A.L., Salarian, H., Khaleghinia, J., 2020. Effects of the Hinge Position and Suction on Flow Separation and Aerodynamic Performance of the NACA 0012 Airfoil. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(86).
  • 4. Kadhem, H.A., Hussein, A.A., 2019. The Effect of Wind Velocity on the Suppression of Composite Wing Airfoil NACA 0012. Al-Khwarizmi Engineering Journal, 15(3), 38- 44.
  • 5. Yu, Y., Lyu, Z., Xu, Z., Martins, J.R.R.A., 2018. On the Influence of Optimization Algorithm and Initial Design on Wing Aerodynamic Shape Optimization. Aerospace Science and Technology, 75, 183-199.
  • 6. Hanna, Y.G.T., Spedding, G.R., Aerodynamic Performance Improvements Due to Porosity in Wings at Moderate Re. AIAA Aviation 2019 Forum, 17-21 June 2019, Dallas, Texas.
  • 7. Stanford, B.K., Jocobson, K.E., Massey, S.J., Transonic Aeroelastic Modeling of the NACA 0012 Benchmark Wing. AIAA Aviation 2020 Forum, June 15-19, 2020, Virtual Event, Session: Aerodynamic-Structural Dynamics Interaction, AIAA, 2020-2716.
  • 8. Yan, B.K., 2018. Flutter Analysis of a Flexibly Supported Wing. Doctor of Philosophy Thesis, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, January 2018.
  • 9. Hasnaoui, M., Naamane, A., Akhmari, H., 2019. Asymptotic Modeling the Aerodynamic Coefficients of the NACA Airfoil. Modelling, Measurement and Control B, 88(2-4), 58-66.
  • 10. Körpe, D.S., Kanat, Ö.Ö., Oktay, T., 2019. The Effects of Initial y plus: Numerical Analysis of 3D NACA 4412 Wing Using γ-Reθ SST Turbulence Model. European Journal of Science and Technology, 17, 692-702.
  • 11. Kumar, B.R., 2019. Enhancing Aerodynamic Performance of NACA 4412 Aircraft Wing Using Leading Edge Modification. Wind and Structures, 29(4), 271-277.
  • 12. Halima, Z., Djilali, B., 2018. Aeroelastic Analysis of an Aircraft Wing Type NACA 4412 with Reduced Scale. International Journal of Modeling and Optimization, 8(4), 241-245.
  • 13. Gore, K., Gote, A., Govale, A., Kanawade, A., Humane, S., 2018. Aerodynamic Analysis of Aircraft Wings Using CFD. International Research Journal of Engineering and Technology (IRJET), 5(6), 639-644.
  • 14. Gloutak, D.A., Farnsworth, J.A., 2020. Characteristic Wing Measurements of a NACA 0015 in Steady and Unsteady Surging Wind Tunnel Flow. AIAA 2020-1558 Session: Special Session: Surging and Surging/Pitching Aerodynamics II.
  • 15. Movahedian, A., Pasandidehfard, M., Roohi, E., 2019. LES Investigation of Sheet-Cloud Cavitation around a 3-D Twisted Wing with a NACA 16012 Hydrofoil. Ocean Engineering, 192(106547), 1-13.
  • 16. Dent, J., Robson, J., Basso, A., Ellin, A., Prakash, A., Hamad, F., 2019. Computational Study of Aerodynamic Performance and Flow Structure Around NACA 23012 Wing. International Journal of Aerodynamics (Accepted/In press)
  • 17.Ismail, N.A., Kaisan, M.U., Balogun, M.B., Abdullahi, M.B., Faru, F.T., Ibrahim, I.U., 2020. Effect of Angle of Attack on Lift, Drag, Pitching Moment and Pressure Distribution of NACA 4415 Wing. Journal of Science Technology and Education, 8(1), 31-44.
  • 18. Fatahian, E., Nichkoohi, A.L., Fatahian, H., 2019. Numerical Study of the Effect of Suction at a Compressible and High Reynolds Number Flow to Control the Flow Separation Over NACA 2415 Airfoil. Progress in Computational Fluid Dynamics, 19(3), 170-179.
  • 19. Eken, S., 2019. Free Vibration Analysis of Composite Aircraft Wings Modeled as Thin-Walled Beams with NACA Airfoil Sections. Thin-Walled Structures, 139, 362-371.
  • 20. Viglietti, A., Zappino, E., Carrera, E., 2019. Free Vibration Analysis of Variable Angle-tow Composite Wing Structures. Aerospace Science and Technology, 92, 114-125.
  • 21. Wang, A., Ouyang, H., Xie, H., Wu, Y., 2019. Experimental Investigation on a Single NACA Airfoil’s Nonlinear Aeroelasticity in Wake Induced Vibrations. Fluid Dynamics, 54(4), 535–549.
  • 22.Bogrekci, I., Demircioglu, P., Sucuoglu, H.S., Guven, E., Demir, N., Durakbasa, M.N., 2019. Structural and Modal Analyses of NACA 66-206 Aircraft Wing Model. Proceedings of the International Symposium for Production Research.
  • 23. Kulshreshtha, A., Gupta, S.K., Singhal, P., 2020. FEM/CFD Analysis of Wings at Different Angle of Attack. Materials Today: Proceeedings, 26(2), 1638-1643.
  • 24. Triet, N.M., Viet, N.N., Thang, P.M., 2015. Aerodynamic Analysis of Aircraft Wing. VNU Journal of Science: Mathematics-physics, 31(2), 68-75.
  • 25. Perera, M., He, Y., Guo, S., 2010. Structural and Dynamic Analysis of a Seamless Aeroelastic Wing. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 12 April 2010-15 April 2010, Orlando, Florida.
  • 26. Perera, M., Guo, S., 2009. Optimal Design of an Aeroelastic Wing Structure with Seamless Control Surfaces. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(8), 1141-1151.
  • 27. Newman, J.C., Newman, P.A., Taylor, A.C., Hou, G.J.W., 1999. Efficient Nonlinear Static Aeroelastic Wing Analysis. Computers & Fluids, 28, 615-628.
  • 28. Alyanak, E.J., Pendleton, E., 2014. A Design Study Employing Aeroelastic Tailoring and an Active Aeroelastic Wing Design Approach on a Tailless Lambda Wing Configuration, 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 16-20 June 2014, Atlanta, GA.
  • 29. Hou, G., Satyanarayana, A., 2000. Analytical Sensitivity Analysis of a Static Aeroelastic Wing. 8th Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, U.S.A. 2000.
  • 30.Reich, G.W., Raveh, D.E., Zink, P.S., 2004. Application of Active-aeroelastic-wing Technology to a Joined-wing Sensorcraft. Journal of Aircraft, 41(3), 594-602.
  • 31. Zink, P.S., Raveh, D.E., Mavris, D.N., 2004. Robust Structural Design of an Active Aerolastic Wing with Maneuver Load Inaccuracies. Journal of Aircraft, 41(3), 585-593.
  • 32. Guo, S., 2007. Aeroelastic Optimization of an Aerobatic Aircraft Wing Structure. Aerospace Science and Technology, 11, 396–404.
  • 33. Stanford, B.K., 2016. Static and Dynamic Aeroelastic Tailoring with Variable-camber Control. Journal of Guidance, Control, and Dynamics, 39(11), 2522-2534.
  • 34. Szollosi, A., Baranyi, P., 2017. Improved Control Performance of the 3-Dof Aeroelastic Wing Section: A Tip Model Based 2d Parametric Control Performance Optimization. Asian Journal of Control, 19(2), 450–466.
  • 35. Abbott, I.H., Von Doenhoff, A.E., 1959. Theory of Wing Sections-including a Summary of Airfoil Data, Dover Publications, New York.
  • 36. Haque, M.N., Ali, M., Ara, I., 2015. Experimental Investigation on the Performance of NACA 4412 Aerofoil with Curved Leading Edge Planform. Procedia Engineering, 105, 232–240.
  • 37. Yagmur, S., Dogan, S., Aksoy, M.H., Goktepeli, I., 2020. Turbulence Modeling Approaches on Unsteady Flow Structures around a Semi-circular Cylinder. Ocean Engineering, 200, 107051.
  • 38. McAlister, K.W., Takahaski, R.K., 1991. NACA 0015 Wing Pressure and Trailing Vortex Measurements, NASA Technical Paper 3151.
  • 39.Rubel, R.I., Uddin, M.K., Islam, M.Z., Rokunuzzaman, M., 2017. Comparison of Aerodynamics Characteristics of NACA 0015 & NACA 4415 Aerofoil Blade. International Journal of Research-granthaalayah, 5(11), 187–197.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Murat Yavuz Bu kişi benim 0000-0002-5892-0075

Yayımlanma Tarihi 30 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 3

Kaynak Göster

APA Yavuz, M. M. (2021). Flow and Mechanical Characteristics of a Modified Naca Wing Geometry. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 815-825. https://doi.org/10.21605/cukurovaumfd.1005807