Araştırma Makalesi
BibTex RIS Kaynak Göster

ZrO2 Nanolif Oksijen Sensörünün Performans Değerlendirmesi

Yıl 2021, Cilt: 36 Sayı: 4, 979 - 987, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040751

Öz

ZrO2 tabanlı geleneksel otomotiv oksijen sensörlerine (GOS) alternatif bir oksijen sensörü başarıyla üretilmiştir. Egzoz gazlarının temas edeceği ve kimyasal reaksiyonların başlayacağı sensör aktif yüzeyini oluşturmak için, polivinil alkol ve ZrO2’den oluşan çözelti kullanılarak (ZrO2+PVOH) elektroeğirme yöntemiyle nanolifler elde edilmiş ve sonrasında bu lifler 700 oC sıcaklıkta kalsinasyon işlemine tabi tutulmuştur. İşlem sıcaklığının hassas kontrolü ve nanolif yapıların yüksek yüzey/hacim oranları sayesinde, artan egzoz gaz konsantrasyonları (%50-60’a kadar) ve yüksek çalışma sıcaklığı şartları altında, ZrO2+PVOH nanolif sensörün GOS’a yakın ölçüm performansı gösterdiği tespit edilmiştir. ZrO2+PVOH nanolif sensörün 700 oC çalışma sıcaklığı ve %50 egzoz gaz konsantrasyonunda maksimum algılama performansı (Ra/Re) olan 7,24’ü gösterdiği, aynı şartlar altında geleneksel oksijen sensörü için ise bu değerin 8,11 olduğu tespit edilmiştir. Nanolif sensörün geniş bir egzoz gaz sıcaklık aralığında (270-900 oC), kabul edilebilir algılama sonuçları gösterdiği gözlemlenmiştir. Elde edilen performans değeri, GOS’a kıyasla ortalama %15 az olsa da, bu nanolif sensör, gelecekte üretilecek daha kısa cevap-toparlanma süresine sahip ve hassas ölçüm yapabilen oksijen sensörleri için umut vadetmektedir.

Kaynakça

  • 1. Mun, T., Koo, J.Y., Lee, J., Kim, S.J., Umarji, G., Amalnerkar, D., Lee, W., 2020. Resistive-type Lanthanum Ferrite Oxygen Sensor Based on Nanoparticle-assimilated Nanofiber Architecture. Sensors and Actuators: B, 324, 1-12.
  • 2. Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., Hu, P., Yang, C., Grundmann, M., Liu, X., Fu, Y., 2019. Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-Precision Gas Sensors Operated at Room Temperature. Materials Horizon, 6, 470-506.
  • 3. Hu, N., Yang, Z., Wang, Y., Zhang, L., Wang, Y., Huang, X., Wei, H., Wei, L., Zhang, Y., 2014. Ultrafast and Sensitive Room Temperature NH3 Gas Sensors Based on Chemically Reduced Graphene Oxide. Nanotechnology, 25, 23-32.
  • 4. Kim, S.J., Koh, H.J., Ren, C.E., Kwon, O., Maleski, K., Yeon Cho, S.S., Anasori, B., Kim, C.K., Choi, Y.K., Kim, J., Gogotsi, Y., Jung, H.T., 2018. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nanotechnology, 12, 986-993.
  • 5. Grassi, M., Malcovati, P., Baschirotto, A., 2005. A High-precision Wide-range front-end for Resistive Gas Sensors Arrays. Sensors and Actuators: B, 111-112, 281-285.
  • 6. Ivanov, P., Llobet, E., Vilanova, X., Brezmes, J., Hubalek, J., Correig, X., 2004. Development of High Sensitivity Ethanol Gas Sensors Based on Pt-doped SnO2 Surfaces. Sensors and Actuators: B, 99, 201–206.
  • 7. Kim, Y.K., Kang, H., Kim, J.K., 2016. Directly Attached Airbag Sensor Packaging for Automobiles. Pan Pacific Microelectronics Symposium. Big Island, Hawaii, 1-3.
  • 8. Tian, H., Shu, Y., Wang, X.F., Mohammad, M.A., Bie, Z., Xie, Q.Y., Li, C., Mi, W.T., Yang, Y., Ren, T.L., 2015. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range. Scientific Reports, 5, 1-6.
  • 9. Nguyen, L.V., Warren-Smith, S.C., Ebendorff-Heidepriem, H., Monro, T.M., 2016. Interferometric High Temperature Sensor Using Suspended-core Optical Fibers. Optics Express, 24, 8967-8971.
  • 10. Yilmaz, O.E., Erdem, R., 2020. Evaluating Hydrogen Detection Performance of an Electrospun CuZnFe2O4 Nanofiber Sensor. International Journal of Hydrogen Energy, 45, 26402-26412.
  • 11. Seo, Y., Memon, M.U., Lim, S., 2016. Microfluidic Eighth-mode Substrate-integrated-waveguide Antenna for Compact Ethanol Chemical Sensor Application. IEEE Transactions on Antennas and Propagation, 64, 3218-3222.
  • 12. Aslani, A., Oroojpour, V., 2011. CO Gas Sensing of CuO Nanostructures Synthesized by an Assisted Solvothermal Wet Chemical Route. Physica B: Condensed Matter, 406, 144-149.
  • 13. Nagarajan, V., Chandiramouli, R., 2019. Detection of Trace Level of Hazardous Phosgene Gas on Antimonene Nanotube Based on First-principles Method. Journal of Molecular Graphics and Modelling, 88, 32-40.
  • 14. Van Hoang, N., Hung, C.M., Hoa, N.D., Van Duy, N., Van Hieu, N., 2018. Facile On-chip Electrospinning of ZnFe2O4 Nanofiber Sensors with Excellent Sensing Performance to H2S Down ppb Level. Journal of Hazardous Materials, 360, 6-16.
  • 15. Bhattacharjee, S., Roy, P., Ghosh, S., Misra, S., Obaidat, M.S., 2012. Wireless Sensor Network-based Fire Detection, Alarming, Monitoring and Prevention System for Bord-and-Pillar Coal Mines. Journal of System and Softwares, 85, 571-581.
  • 16. Iguchi, S., Mitsubayashi, K., Uehara, T., Ogawa, M., 2005. A Wearable Oxygen Sensor for Transcutaneous Blood Gas Monitoring at The Conjunctiva. Sensors and Actuators: B, 108, 733–737.
  • 17. Chatburn, R.L., Williams, T.J., 2010. Performance Comparison of 4 Portable Oxygen Concentrators. Respiratory Care, 55, 433-442.
  • 18. Fleming, W.J., 2001. Overview of Automotive Sensors. IEEE Sensors Journal, 1, 296-308.
  • 19. Grace, R.H., 2001. Application Opportunities of MEMS/MST in the Automotive Market: The Great Migration from Electromechanical and Discrete Solutions, Springer, Berlin, 1-16.
  • 20. Hoffman, D., Rizzo, M., 1998. Chevrolet C5 Corvette Vehicle Dynamic Control System. SAE Technical Paper, 980233, 1-8.
  • 21. Eddy, D., Sparks, D., 1998. Application of MEMS Technology in Automotive Sensors and Actuators. Proceeding IEEE, 86, 1747–1755.
  • 22. Frank, R., 1998. Future Sensing in Vehicle Applications. Sensors and Transducers, 25, 36-45.
  • 23. Litzelman, S.J., Rothschild, A., Tuller, H.L., 2005. The Electrical Properties and Stability of SrTi0.65Fe0.35O3−δ thin Films for Automotive Oxygen Sensor Applications. Sensors and Actuators: B, 108, 231–237.
  • 24. SST Sensing: Zirconium Dioxide (ZrO2) Oxygen Sensor Operating Principle Guide. https://sstsensing.com/wpcontent/uploads/2016/05/AN0043_rev5_Zirconia-Sensor Operating-Principle and Construction-Guide.pdf 2017. Accessed 10 February 2021
  • 25. Ritter, T., Hagen, G., Lattus, J., Moos, R., 2018. Solid State Mixed-potential Sensors as Direct Conversion Sensors for Automotive Catalysts. Sensors and Actuators: B, 255, 3025–3032.
  • 26. Riegel, J., Neumann, H., Wiedenmann, H.M., 2002. Exhaust Gas Sensors for Automotive Emission Control. Solid State Ionics, 152–153, 783– 800.
  • 27. Bektas, M., Stocker, T., Mergner, A., Hagen, G., Moos, R., 2018. Combined Resistive and Thermoelectric Oxygen Sensor with Almost Temperature-independent Characteristics. Journal of Sensors and Sensor Systems, 7, 289–297.
  • 28. Wiedenmann, H.M., Hotzel, G., Neumann, H., Riegel, J., Stanglmeier, F., Weyl, H., 1999. Exhaust gas sensors, Automotive Electronics Handbook. McGraw-Hill, New York.
  • 29. Xu, X., Sun, J., Zhang, H., Wang, Z., Dong, B., Jiang, T., Wang, W., Li, Z., Wang, C., 2011. Effects of Al Doping on SnO2 Nanofibers in Hydrogen Sensor. Sensors and Actuators: B, 160, 858-863.
  • 30. Huang, J., Wan, Q., 2009. Gas Sensors Based on Semiconducting Metal Oxide One-dimensional Nanostructures. Sensors, 9, 9903-9924.
  • 31. Comini, E., Faglia, G., Sberveglieri, G., 2002. Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts. Applied Physics Letters, 81, 1869-1871.
  • 32. Erdem, R., Yuksek, M., Sancak, E., Atak, O., Erginer, M., Kabasakal, L., Beyit, A., 2017. Electrospinning of Single and Multilayered Scaffolds for Tissue Engineering Applications. Journal of Textile Institute, 108, 935-946.
  • 33. Budun, S., Isgoren, E., Erdem, R,. Yuksek, M., 2015. Morphological and Mechanical Analysis of Electrospun Shape Memory Polymer Fibers. Applied Surface Science, 380, 294–300.
  • 34. Erdem, R., Akalin, M., 2015. Characterization and Evaluation of Antimicrobial Properties of Electrospun Chitosan/Polyethylene Oxide Based Nanofibrous Scaffolds (with/without Nanosilver). Journal of Industrial Textiles, 44, 553–571.
  • 35. Erdem, R,. Ilhan, M., Sancak, E., 2015. Analysis of EMSE and Mechanical Properties of Sputter Coated Electrospun Nanofibers. Applied Surface Science, 380, 326–330.
  • 36. Erdem, R., Usta, I., Akalin, M., Atak, O., Yuksek, M., Pars, A., 2015. The Impact of Solvent Type and Mixing Ratios of Solvents on The Properties of Polyurethane Based Electrospun Nanofibers. Applied Surface Science, 334, 227–230.
  • 37. Shahabuddin, M., Umar, A., Tomar, M., Gupta, V., 2017. Custom Designed Metal Anchored SnO2 Sensor for H2 Detection. International Journal of Hydrogen Energy, 42, 4597-4609.
  • 38. Yamazo, N., 1991. New Approaches for Improving Semiconductor Gas Sensors. Sensors and Actuators: B, 5, 7-19.
  • 39. Yamazo, N., Shimano, K., 2009. New Perspectives of Gas Sensor Technology. Sensors and Actuators: B, 138, 100-107.
  • 40. Liu, L., Li, S., Zhuang, J., Wang, L., Zhang, J., Li, H., Liu, Z., Han, Y., Jiang, X., Zhang, P., 2011. Improved Selective Acetone Sensing Properties of Co-doped ZnO Nanofibers by Electrospinning. Sensors and Actuators: B, 155, 782-788.
  • 41. Liang, Y.X., Chen, Y.J., Wang, T.H., 2004. Low-resistance Gas Sensors Fabricated from Multiwalled Carbon Nanotubes Coated with a Thin Tin Oxide Layer. Applied Physics Letters, 85, 666-668.
  • 42. Sancak, E., Ozen, M.S., Erdem, R., Yilmaz, A. C., Yuksek, M., Soin, T., Shah, T., 2018. PA6/Silver Blends: Investigation of Mechanical and Electromagnetic Shielding Behavior of Electrospun Nanofibers. Tekstil ve Konfeksiyon, 28, 229-235.
  • 43. Kharazmi, A., Faraji, N., Mat Hussin, R., Saion, E., Yunus, W.M.M., Behzad, K., 2015. Structural, Optical, Opto-Thermal and Thermal Properties of Zns–PVA Nanofluids Synthesized Through Aradiolytic Approach. Beilstein Journal of Nanotechnology, 6, 529–536.
  • 44. Madhusudhan, H.C., Shobhadevi, S.N., Nagabhushana, B.M., Chaluvaraju, B.V., Murugendrappa, M.V., Krishna, R.H., Nagabhushana, H., Radeep, N.R., 2016. Effect of Fuels on Conductivity, Dielectric and Humidity Sensing Properties of ZrO2 Nanocrystals Prepared by Low Temperature Solution Combustion Method. Journal of Asian Ceramics Society, 4, 309-318.
  • 45. Sjoholm, P., Ingham, D.B., Torvela, H., 2001. Gas Cleaning Technology, Industrial Ventilation Design Guidebook, Elsevier, 1197-1316.

Performance Assessment of ZrO2 Nanofibrous Oxygen Sensor

Yıl 2021, Cilt: 36 Sayı: 4, 979 - 987, 29.12.2021
https://doi.org/10.21605/cukurovaumfd.1040751

Öz

An alternative oxygen sensor to conventional ZrO2 based automotive oxygen sensors (COS) was successfully manufactured. ZrO2 nanoparticles were used as base material and nanofibers were fabricated via electrospinning using polyvinyl alcohol and ZrO2 solution (ZrO2+PVOH) to obtain active surface of the sensor where the engine exhaust gas interacts and chemisorption reactions take place prior to calcination process of nanofibers at 700 oC. Thanks to operating temperature control and high surface/volume ratio of nanofibrous structure, the ZrO2+PVOH nanofibrous sensor demonstrated similar performance with COS under increasing exhaust gas percentage (until 50-60%) along with increasing operating temperature conditions. For ZrO2+PVOH nanofibrous sensor, maximum sensing performance (Ra/Re) of 7.24 was achieved at sensor operating temperature of 700 oC and exhaust gas concentration of 50% whereas it was 8.11 for EOS under same conditions. The ZrO2+PVOH nanofibrous sensor performed acceptable performance throughout wider operating temperature range (270-900 oC) compared to conventional COS. Though an average of 15% reduction in sensing performance was observed for ZrO2+PVOH nanofibrous sensor, the promising results of this alternative oxygen sensor will be a good guide for more comprehensive future works focusing on oxygen sensors with very rapid response-recovery time and light-off capability.

Kaynakça

  • 1. Mun, T., Koo, J.Y., Lee, J., Kim, S.J., Umarji, G., Amalnerkar, D., Lee, W., 2020. Resistive-type Lanthanum Ferrite Oxygen Sensor Based on Nanoparticle-assimilated Nanofiber Architecture. Sensors and Actuators: B, 324, 1-12.
  • 2. Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., Hu, P., Yang, C., Grundmann, M., Liu, X., Fu, Y., 2019. Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-Precision Gas Sensors Operated at Room Temperature. Materials Horizon, 6, 470-506.
  • 3. Hu, N., Yang, Z., Wang, Y., Zhang, L., Wang, Y., Huang, X., Wei, H., Wei, L., Zhang, Y., 2014. Ultrafast and Sensitive Room Temperature NH3 Gas Sensors Based on Chemically Reduced Graphene Oxide. Nanotechnology, 25, 23-32.
  • 4. Kim, S.J., Koh, H.J., Ren, C.E., Kwon, O., Maleski, K., Yeon Cho, S.S., Anasori, B., Kim, C.K., Choi, Y.K., Kim, J., Gogotsi, Y., Jung, H.T., 2018. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nanotechnology, 12, 986-993.
  • 5. Grassi, M., Malcovati, P., Baschirotto, A., 2005. A High-precision Wide-range front-end for Resistive Gas Sensors Arrays. Sensors and Actuators: B, 111-112, 281-285.
  • 6. Ivanov, P., Llobet, E., Vilanova, X., Brezmes, J., Hubalek, J., Correig, X., 2004. Development of High Sensitivity Ethanol Gas Sensors Based on Pt-doped SnO2 Surfaces. Sensors and Actuators: B, 99, 201–206.
  • 7. Kim, Y.K., Kang, H., Kim, J.K., 2016. Directly Attached Airbag Sensor Packaging for Automobiles. Pan Pacific Microelectronics Symposium. Big Island, Hawaii, 1-3.
  • 8. Tian, H., Shu, Y., Wang, X.F., Mohammad, M.A., Bie, Z., Xie, Q.Y., Li, C., Mi, W.T., Yang, Y., Ren, T.L., 2015. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range. Scientific Reports, 5, 1-6.
  • 9. Nguyen, L.V., Warren-Smith, S.C., Ebendorff-Heidepriem, H., Monro, T.M., 2016. Interferometric High Temperature Sensor Using Suspended-core Optical Fibers. Optics Express, 24, 8967-8971.
  • 10. Yilmaz, O.E., Erdem, R., 2020. Evaluating Hydrogen Detection Performance of an Electrospun CuZnFe2O4 Nanofiber Sensor. International Journal of Hydrogen Energy, 45, 26402-26412.
  • 11. Seo, Y., Memon, M.U., Lim, S., 2016. Microfluidic Eighth-mode Substrate-integrated-waveguide Antenna for Compact Ethanol Chemical Sensor Application. IEEE Transactions on Antennas and Propagation, 64, 3218-3222.
  • 12. Aslani, A., Oroojpour, V., 2011. CO Gas Sensing of CuO Nanostructures Synthesized by an Assisted Solvothermal Wet Chemical Route. Physica B: Condensed Matter, 406, 144-149.
  • 13. Nagarajan, V., Chandiramouli, R., 2019. Detection of Trace Level of Hazardous Phosgene Gas on Antimonene Nanotube Based on First-principles Method. Journal of Molecular Graphics and Modelling, 88, 32-40.
  • 14. Van Hoang, N., Hung, C.M., Hoa, N.D., Van Duy, N., Van Hieu, N., 2018. Facile On-chip Electrospinning of ZnFe2O4 Nanofiber Sensors with Excellent Sensing Performance to H2S Down ppb Level. Journal of Hazardous Materials, 360, 6-16.
  • 15. Bhattacharjee, S., Roy, P., Ghosh, S., Misra, S., Obaidat, M.S., 2012. Wireless Sensor Network-based Fire Detection, Alarming, Monitoring and Prevention System for Bord-and-Pillar Coal Mines. Journal of System and Softwares, 85, 571-581.
  • 16. Iguchi, S., Mitsubayashi, K., Uehara, T., Ogawa, M., 2005. A Wearable Oxygen Sensor for Transcutaneous Blood Gas Monitoring at The Conjunctiva. Sensors and Actuators: B, 108, 733–737.
  • 17. Chatburn, R.L., Williams, T.J., 2010. Performance Comparison of 4 Portable Oxygen Concentrators. Respiratory Care, 55, 433-442.
  • 18. Fleming, W.J., 2001. Overview of Automotive Sensors. IEEE Sensors Journal, 1, 296-308.
  • 19. Grace, R.H., 2001. Application Opportunities of MEMS/MST in the Automotive Market: The Great Migration from Electromechanical and Discrete Solutions, Springer, Berlin, 1-16.
  • 20. Hoffman, D., Rizzo, M., 1998. Chevrolet C5 Corvette Vehicle Dynamic Control System. SAE Technical Paper, 980233, 1-8.
  • 21. Eddy, D., Sparks, D., 1998. Application of MEMS Technology in Automotive Sensors and Actuators. Proceeding IEEE, 86, 1747–1755.
  • 22. Frank, R., 1998. Future Sensing in Vehicle Applications. Sensors and Transducers, 25, 36-45.
  • 23. Litzelman, S.J., Rothschild, A., Tuller, H.L., 2005. The Electrical Properties and Stability of SrTi0.65Fe0.35O3−δ thin Films for Automotive Oxygen Sensor Applications. Sensors and Actuators: B, 108, 231–237.
  • 24. SST Sensing: Zirconium Dioxide (ZrO2) Oxygen Sensor Operating Principle Guide. https://sstsensing.com/wpcontent/uploads/2016/05/AN0043_rev5_Zirconia-Sensor Operating-Principle and Construction-Guide.pdf 2017. Accessed 10 February 2021
  • 25. Ritter, T., Hagen, G., Lattus, J., Moos, R., 2018. Solid State Mixed-potential Sensors as Direct Conversion Sensors for Automotive Catalysts. Sensors and Actuators: B, 255, 3025–3032.
  • 26. Riegel, J., Neumann, H., Wiedenmann, H.M., 2002. Exhaust Gas Sensors for Automotive Emission Control. Solid State Ionics, 152–153, 783– 800.
  • 27. Bektas, M., Stocker, T., Mergner, A., Hagen, G., Moos, R., 2018. Combined Resistive and Thermoelectric Oxygen Sensor with Almost Temperature-independent Characteristics. Journal of Sensors and Sensor Systems, 7, 289–297.
  • 28. Wiedenmann, H.M., Hotzel, G., Neumann, H., Riegel, J., Stanglmeier, F., Weyl, H., 1999. Exhaust gas sensors, Automotive Electronics Handbook. McGraw-Hill, New York.
  • 29. Xu, X., Sun, J., Zhang, H., Wang, Z., Dong, B., Jiang, T., Wang, W., Li, Z., Wang, C., 2011. Effects of Al Doping on SnO2 Nanofibers in Hydrogen Sensor. Sensors and Actuators: B, 160, 858-863.
  • 30. Huang, J., Wan, Q., 2009. Gas Sensors Based on Semiconducting Metal Oxide One-dimensional Nanostructures. Sensors, 9, 9903-9924.
  • 31. Comini, E., Faglia, G., Sberveglieri, G., 2002. Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts. Applied Physics Letters, 81, 1869-1871.
  • 32. Erdem, R., Yuksek, M., Sancak, E., Atak, O., Erginer, M., Kabasakal, L., Beyit, A., 2017. Electrospinning of Single and Multilayered Scaffolds for Tissue Engineering Applications. Journal of Textile Institute, 108, 935-946.
  • 33. Budun, S., Isgoren, E., Erdem, R,. Yuksek, M., 2015. Morphological and Mechanical Analysis of Electrospun Shape Memory Polymer Fibers. Applied Surface Science, 380, 294–300.
  • 34. Erdem, R., Akalin, M., 2015. Characterization and Evaluation of Antimicrobial Properties of Electrospun Chitosan/Polyethylene Oxide Based Nanofibrous Scaffolds (with/without Nanosilver). Journal of Industrial Textiles, 44, 553–571.
  • 35. Erdem, R,. Ilhan, M., Sancak, E., 2015. Analysis of EMSE and Mechanical Properties of Sputter Coated Electrospun Nanofibers. Applied Surface Science, 380, 326–330.
  • 36. Erdem, R., Usta, I., Akalin, M., Atak, O., Yuksek, M., Pars, A., 2015. The Impact of Solvent Type and Mixing Ratios of Solvents on The Properties of Polyurethane Based Electrospun Nanofibers. Applied Surface Science, 334, 227–230.
  • 37. Shahabuddin, M., Umar, A., Tomar, M., Gupta, V., 2017. Custom Designed Metal Anchored SnO2 Sensor for H2 Detection. International Journal of Hydrogen Energy, 42, 4597-4609.
  • 38. Yamazo, N., 1991. New Approaches for Improving Semiconductor Gas Sensors. Sensors and Actuators: B, 5, 7-19.
  • 39. Yamazo, N., Shimano, K., 2009. New Perspectives of Gas Sensor Technology. Sensors and Actuators: B, 138, 100-107.
  • 40. Liu, L., Li, S., Zhuang, J., Wang, L., Zhang, J., Li, H., Liu, Z., Han, Y., Jiang, X., Zhang, P., 2011. Improved Selective Acetone Sensing Properties of Co-doped ZnO Nanofibers by Electrospinning. Sensors and Actuators: B, 155, 782-788.
  • 41. Liang, Y.X., Chen, Y.J., Wang, T.H., 2004. Low-resistance Gas Sensors Fabricated from Multiwalled Carbon Nanotubes Coated with a Thin Tin Oxide Layer. Applied Physics Letters, 85, 666-668.
  • 42. Sancak, E., Ozen, M.S., Erdem, R., Yilmaz, A. C., Yuksek, M., Soin, T., Shah, T., 2018. PA6/Silver Blends: Investigation of Mechanical and Electromagnetic Shielding Behavior of Electrospun Nanofibers. Tekstil ve Konfeksiyon, 28, 229-235.
  • 43. Kharazmi, A., Faraji, N., Mat Hussin, R., Saion, E., Yunus, W.M.M., Behzad, K., 2015. Structural, Optical, Opto-Thermal and Thermal Properties of Zns–PVA Nanofluids Synthesized Through Aradiolytic Approach. Beilstein Journal of Nanotechnology, 6, 529–536.
  • 44. Madhusudhan, H.C., Shobhadevi, S.N., Nagabhushana, B.M., Chaluvaraju, B.V., Murugendrappa, M.V., Krishna, R.H., Nagabhushana, H., Radeep, N.R., 2016. Effect of Fuels on Conductivity, Dielectric and Humidity Sensing Properties of ZrO2 Nanocrystals Prepared by Low Temperature Solution Combustion Method. Journal of Asian Ceramics Society, 4, 309-318.
  • 45. Sjoholm, P., Ingham, D.B., Torvela, H., 2001. Gas Cleaning Technology, Industrial Ventilation Design Guidebook, Elsevier, 1197-1316.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özlem Erdem Yılmaz Bu kişi benim 0000-0002-0976-2162

Yayımlanma Tarihi 29 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 4

Kaynak Göster

APA Erdem Yılmaz, Ö. (2021). Performance Assessment of ZrO2 Nanofibrous Oxygen Sensor. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 979-987. https://doi.org/10.21605/cukurovaumfd.1040751