Araştırma Makalesi
BibTex RIS Kaynak Göster

Seralarda Doğal Havalandırma Açıklıklarının Belirlenmesi

Yıl 2022, Cilt: 37 Sayı: 1, 67 - 78, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094980

Öz

Güneş ışınımı şiddetinin yüksek olduğu dönemlerde seralarda bitkilerin arzu ettiği konfor ortamı en ucuz olarak doğal havalandırma ile sağlanabilmektedir. Bitkisel üretimin yapıldığı serada iyi bir havalandırma ile hava sıcaklığı dış sıcaklığın 1-2 oC üzerine çekilirken, bitki sıcaklığı hava sıcaklığının 5-15 oC üzerine yükselmektedir. Belirtilen nedenle havalandırma ile gölgelemenin birlikte yapılması sıcak dönemlerde bitki konfor ortamının sağlanmasında etkili bir iklimlendirme yöntemi olarak kabul edilmektedir. Hava değişim sayısı seralarda havalandırma etkinliğinin belirlenmesinde kullanılan önemli bir parametredir. Hava değişim sayısı havalandırma açıklıklarının büyüklüğüne, konumuna ve havalandırma açıklıklarında
kullanılan böcek tüllerinin porozitelerine bağlı olarak değişmektedir.
Yapılan çalışmada havalandırma açıklıklarının büyüklüğüne, kullanılan böcek tülünün porozite katsayısına ve rüzgâr hızına bağlı olarak hava değişim sayısı ve ulaşılabilen sıcaklık farkı hesaplanmıştır. Yapılan hesaplamalar sonucunda %50 oranında gölgelendirilen, sera taban alanına göre çatısında %40 oranında havalandırma açıklığı bulunan ve havalandırma açıklıklarına böcek tülünün gerildiği seralarda ulaşılan hava değişim katsayısı 30 h-1 olurken sıcaklık farkı 1,6 oC olarak belirlenmiştir.

Kaynakça

  • 1. Kittas, C., Katsoulas, N., Bartzanas, T., Bakker, S., 2013. Greenhouse Climate Control and Energy Use. Good Agricultural Practices for Greenhouse Vegetable Crops Principles for Mediterranean Climate Areas. FAO Plant Production and Protection Paper, 21. 63–96
  • 2. Nisen, A., Grafiadellis, M., Jiménez, R., La Malfa, G., Martiez-Garcia, P,F., Monteiro, A., Verlodt, H., Villele, O., Zabeltitz, C,V., Denis, J,C., Boudoin, W., Garnaud, J.C., 1988. Cultures Protégées en Climat Méditerranéen, FAO, Rome.
  • 3. Baytorun, A.N., Abak, K., Tokgöz, H., Güler, Y., Üstün, S., 1995. Seraların Kışın İklimlendirilmesi ve Denetimi Üzerinde Araştırmalar. Türkiye Bilimsel ve Teknik Araştırma Kurumu, Proje no TOAG-993.
  • 4. Von Zabeltitz, C., 2011. Integrated Greenhouse Systems for Mild Climates. Springer-Verlag Berlin Heidelberg.
  • 5. Baytorun, A.N., 2016. Seralar. Nobel Yayınevi.
  • 6. Goldammer, T., 2019. Greenhouse Management. A Guide to Operations and Technology. Apex Publishers, ISBN-10: 0- 9675212-9-7
  • 7. Baytorun, A.N., Üstün, S., Akyüz, A., Önder, D., 2017. Akdeniz İklim Koşullarında Seralarda Havalandırma Açıklık Oranlarının Belirlenmesi. Türk Tarım–Gıda Bilim ve Teknoloji Dergisi, 5(4), 409-415.
  • 8. Baytorun, A.N., Von Zabeltitz, C., 1987. Die Wirkung Bautechnischer Einflussgrößen Auf den Luftwechsel Gelüfteter Gewächshäusern. Horticultural Science, ISSN 0016-478 Band 52 Heft 5.
  • 9. Von Zabeltitz, Chr. 1986. Gewächshäuser. Verlag Eugen Ulmer, Stuttgart.
  • 10. Baytorun, A.N., 1986. Bestimmung des Luftwechsels bei Gelüfteten Gewächshäusern. Diss, Universität Hannover.
  • 11. Muñoz, P., 1998. Ventilación Natural de Invernaderos Multitúnel. Ph. D. Universitat de Lleida, 145.
  • 12. Bot, G.P.A., 1983. Greenhouse Climate: from Physical Processes to a Dynamic Model. Ph.D. Thesis, Agricultural University, Wageningen, 1983, 239.
  • 13. Boulard, T., Baille, A., 1995. Modeling of the Air Exchange Rate in a Greenhouse Equipped with Continuous Roof Vents. J Agric Eng Res., 61, 37-48.
  • 14. Baptista, F.J., Bailey, B.J., Randall, J.M., Meneses, J.F., 1999. Greenhouse Ventilation Rate: Theory and Measurement with Tracer Gas Techniques. J. Agric. Eng Res., (1999) 72, 363-374.
  • 15. Perez-Parra, J., Baeza, E., MonteroJ. I., Bailey, B.J., 2004. Natural Ventilation of Greenhouses. Biosystems Eng., 87(3), 355–360.
  • 16. Katsoulas, N., Bartzanas, T., Boulard, T., Mermier, M., Kittas, C. 2006. Effect of Vent Openings and Insect Screens on Greenhouse Ventilation. Biosyst. Eng., 93(4), 427–436.
  • 17. Wang, S., Deltour, J.M., 1996. Experimental Ventilation Function for Large Greenhouses Based on a Dynamic Energy Balance Model. International Agricultural Engineering Journal, 5(3), 103–112.
  • 18. Demrati, H., Boulard, T., Bekkaoui, A., Birden, L. 2001. Natural Ventilation and Microclimate Performance of a Large-scale Banana Greenhouse. J Agric Eng Res., 80(3), 261–271.
  • 19. Kittas, C., Boulard, T., Mermier, M., Papadakis, G., 1996. Wind-induced Air Exchange Rates in a Greenhouse Tunnel with Continuous Side Openings. J Agric Eng Res., 65, 37-49.
  • 20. Meneses, J.F., Raposo, J.R., 1987. Natural Ventilation of Animal Housings: Theory and Methods of Calculation. Anais do Instituto Superior de Agronomia, 249-265.
  • 21. Bailey, B.J., 2000. Wind-driven Ventilation in a Large Greenhouse. Acta Hortic 534, 309-317.
  • 22. Papadakis, G., Mermier, M., Meneses, J., Boulard, T., 1996. Measurement and Analysis of Air Exchange Rates in a Greenhouse with Continuous of an Side Openings. J Agric Eng Res., 63, 219-228.
  • 23. Perez-Parra, J., Montero, J.I., Baeza, E.J., Lopez Hernandez, J.C., 2006. Determination of Global Wind Coefficients for the Development of Ventilation Rate Calculation Models for a Parral Multi-span Greenhouse. Acta Hortic, 710, 143–150.
  • 24. Boulard, T., 2006. Greenhouse Natural Ventilation Modeling: a Survey of the Different Approaches. Acta Hortic, 719, 29–40
  • 25. De Jong, T., 1990. Natural Ventilation of Large Multispan Greenhouses. PhD Thesis Landbouw. Universiteit Wageningen, Nederlans.
  • 26. Bailey, B., 1998. Principals of Environmental Control, Chapter 3. In: von Zabeltitz (ed) Energy Conservation and Renewable Energies for Greenhouse Heating. 2. FAO Regional Office for Europe.27. Willits, D.H., 2006. Fan Ventilated Greenhouse Cooling: Some Considerations for Design. Acta Hortic, 719, 83–95.
  • 28. ANSI/ASAE EP 406.4 (2003) Standard: Heating, Ventilation and Cooling Greenhouses. American Society of Agricultural Engineers, MI, USA.
  • 29. Willits, D.H., 2003. Cooling fan Ventilated Greenhouses. A Modeling Study. Biosystems Eng., 84(3), 315–329.
  • 30. Bailey, B.J., 2000. Constraints, Limitations, and Achievements in Greenhouse Natural Ventilation. Acta Hortic, 534, 21–30.
  • 31. Pérez-Parra, J., 2002. Ventilación Natural en Invernaderosparral. PhD Universidad de Córdoba.
  • 32. Schmidt, U., 2008. Das Besondere Problem der Feuchte. Bericht zur Bestimmung und des Energiebedarfs von Bewertung Gewächshäuser. KTBL-Workshop. 17. September 2008 in Worms, 53–60.
  • 33. Bethke, J.A., 1994. Considering Installing Screening? This is What You Need to Know. Greenhouse Manager, 13(1), 34–37.
  • 34. Antignus, Y., Mor, N., Ben Joseph, R., Lapidat, M., Cohen, S.H., 1996. UV-absorbing Plastic Sheets Protect Crops from Insect Pests and from Virus Diseases Vectored by Insects. Environ Entomol, 25(5), 919–924.
  • 35. Harmanto, M., Tantau, H.J., Salokhe, V.M., 2006. Microclimate and Air Exchange Rates in Greenhouses Covered with Different Nets in the Humid Tropics. Biosystems Eng., 94(2), 239-253.
  • 36. Teitel, M., 2006. The Effect of Screens on the Micro Climate of Greenhouses and Screen Houses-a Review. Acta Hortic, 719, 575–586.
  • 37. Bailey, B.J., Montero, J.J., Peres Parra, J., Robertson, A.P., Baeza, E., Kamaruddin, R., 2003. Air Flow Resistance of Greenhouse Ventilators with and Without Screen. Biosystems Eng., 86(2), 217–229.

Determination of Natural Ventilation Openings in Greenhouses

Yıl 2022, Cilt: 37 Sayı: 1, 67 - 78, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1094980

Öz

During periods when the intensity of solar radiation is high, it is possible to provide the comfortable environment desired by plants in greenhouses with natural ventilation as the cheapest method. In the greenhouse where plant production is carried out, with good ventilation, the air temperature is become above the external temperature by 1-2 °C, while the plant temperature can rise above the air temperature by 5-15 °C. For this reason, ventilation and shading together are considered an effective method of air conditioning in providing a plant comfortable environment during hot periods. The ventilation rate of air is an important parameter used to determine the ventilation efficiency in greenhouses. The number of air changes (ventilation rate) varies depending on the size, location of the ventilation openings, and the porosity of the insect tulle used in the ventilation openings.
In this study, depending on the size of the ventilation openings and the porosity coefficient of the insect tulle used, and the wind speed, the ventilation rate, and the temperature difference that could be reached were determined. As a result of the calculations, in 50% shaded greenhouse and when the ventilation openings area on the roof to the greenhouses floor area was 40% while the insect tulles were used on the ventilation openings, the temperature difference was determined as 1.6 °C according to the air change coefficient of 30 h-1 that was achieved in the greenhouses.

Kaynakça

  • 1. Kittas, C., Katsoulas, N., Bartzanas, T., Bakker, S., 2013. Greenhouse Climate Control and Energy Use. Good Agricultural Practices for Greenhouse Vegetable Crops Principles for Mediterranean Climate Areas. FAO Plant Production and Protection Paper, 21. 63–96
  • 2. Nisen, A., Grafiadellis, M., Jiménez, R., La Malfa, G., Martiez-Garcia, P,F., Monteiro, A., Verlodt, H., Villele, O., Zabeltitz, C,V., Denis, J,C., Boudoin, W., Garnaud, J.C., 1988. Cultures Protégées en Climat Méditerranéen, FAO, Rome.
  • 3. Baytorun, A.N., Abak, K., Tokgöz, H., Güler, Y., Üstün, S., 1995. Seraların Kışın İklimlendirilmesi ve Denetimi Üzerinde Araştırmalar. Türkiye Bilimsel ve Teknik Araştırma Kurumu, Proje no TOAG-993.
  • 4. Von Zabeltitz, C., 2011. Integrated Greenhouse Systems for Mild Climates. Springer-Verlag Berlin Heidelberg.
  • 5. Baytorun, A.N., 2016. Seralar. Nobel Yayınevi.
  • 6. Goldammer, T., 2019. Greenhouse Management. A Guide to Operations and Technology. Apex Publishers, ISBN-10: 0- 9675212-9-7
  • 7. Baytorun, A.N., Üstün, S., Akyüz, A., Önder, D., 2017. Akdeniz İklim Koşullarında Seralarda Havalandırma Açıklık Oranlarının Belirlenmesi. Türk Tarım–Gıda Bilim ve Teknoloji Dergisi, 5(4), 409-415.
  • 8. Baytorun, A.N., Von Zabeltitz, C., 1987. Die Wirkung Bautechnischer Einflussgrößen Auf den Luftwechsel Gelüfteter Gewächshäusern. Horticultural Science, ISSN 0016-478 Band 52 Heft 5.
  • 9. Von Zabeltitz, Chr. 1986. Gewächshäuser. Verlag Eugen Ulmer, Stuttgart.
  • 10. Baytorun, A.N., 1986. Bestimmung des Luftwechsels bei Gelüfteten Gewächshäusern. Diss, Universität Hannover.
  • 11. Muñoz, P., 1998. Ventilación Natural de Invernaderos Multitúnel. Ph. D. Universitat de Lleida, 145.
  • 12. Bot, G.P.A., 1983. Greenhouse Climate: from Physical Processes to a Dynamic Model. Ph.D. Thesis, Agricultural University, Wageningen, 1983, 239.
  • 13. Boulard, T., Baille, A., 1995. Modeling of the Air Exchange Rate in a Greenhouse Equipped with Continuous Roof Vents. J Agric Eng Res., 61, 37-48.
  • 14. Baptista, F.J., Bailey, B.J., Randall, J.M., Meneses, J.F., 1999. Greenhouse Ventilation Rate: Theory and Measurement with Tracer Gas Techniques. J. Agric. Eng Res., (1999) 72, 363-374.
  • 15. Perez-Parra, J., Baeza, E., MonteroJ. I., Bailey, B.J., 2004. Natural Ventilation of Greenhouses. Biosystems Eng., 87(3), 355–360.
  • 16. Katsoulas, N., Bartzanas, T., Boulard, T., Mermier, M., Kittas, C. 2006. Effect of Vent Openings and Insect Screens on Greenhouse Ventilation. Biosyst. Eng., 93(4), 427–436.
  • 17. Wang, S., Deltour, J.M., 1996. Experimental Ventilation Function for Large Greenhouses Based on a Dynamic Energy Balance Model. International Agricultural Engineering Journal, 5(3), 103–112.
  • 18. Demrati, H., Boulard, T., Bekkaoui, A., Birden, L. 2001. Natural Ventilation and Microclimate Performance of a Large-scale Banana Greenhouse. J Agric Eng Res., 80(3), 261–271.
  • 19. Kittas, C., Boulard, T., Mermier, M., Papadakis, G., 1996. Wind-induced Air Exchange Rates in a Greenhouse Tunnel with Continuous Side Openings. J Agric Eng Res., 65, 37-49.
  • 20. Meneses, J.F., Raposo, J.R., 1987. Natural Ventilation of Animal Housings: Theory and Methods of Calculation. Anais do Instituto Superior de Agronomia, 249-265.
  • 21. Bailey, B.J., 2000. Wind-driven Ventilation in a Large Greenhouse. Acta Hortic 534, 309-317.
  • 22. Papadakis, G., Mermier, M., Meneses, J., Boulard, T., 1996. Measurement and Analysis of Air Exchange Rates in a Greenhouse with Continuous of an Side Openings. J Agric Eng Res., 63, 219-228.
  • 23. Perez-Parra, J., Montero, J.I., Baeza, E.J., Lopez Hernandez, J.C., 2006. Determination of Global Wind Coefficients for the Development of Ventilation Rate Calculation Models for a Parral Multi-span Greenhouse. Acta Hortic, 710, 143–150.
  • 24. Boulard, T., 2006. Greenhouse Natural Ventilation Modeling: a Survey of the Different Approaches. Acta Hortic, 719, 29–40
  • 25. De Jong, T., 1990. Natural Ventilation of Large Multispan Greenhouses. PhD Thesis Landbouw. Universiteit Wageningen, Nederlans.
  • 26. Bailey, B., 1998. Principals of Environmental Control, Chapter 3. In: von Zabeltitz (ed) Energy Conservation and Renewable Energies for Greenhouse Heating. 2. FAO Regional Office for Europe.27. Willits, D.H., 2006. Fan Ventilated Greenhouse Cooling: Some Considerations for Design. Acta Hortic, 719, 83–95.
  • 28. ANSI/ASAE EP 406.4 (2003) Standard: Heating, Ventilation and Cooling Greenhouses. American Society of Agricultural Engineers, MI, USA.
  • 29. Willits, D.H., 2003. Cooling fan Ventilated Greenhouses. A Modeling Study. Biosystems Eng., 84(3), 315–329.
  • 30. Bailey, B.J., 2000. Constraints, Limitations, and Achievements in Greenhouse Natural Ventilation. Acta Hortic, 534, 21–30.
  • 31. Pérez-Parra, J., 2002. Ventilación Natural en Invernaderosparral. PhD Universidad de Córdoba.
  • 32. Schmidt, U., 2008. Das Besondere Problem der Feuchte. Bericht zur Bestimmung und des Energiebedarfs von Bewertung Gewächshäuser. KTBL-Workshop. 17. September 2008 in Worms, 53–60.
  • 33. Bethke, J.A., 1994. Considering Installing Screening? This is What You Need to Know. Greenhouse Manager, 13(1), 34–37.
  • 34. Antignus, Y., Mor, N., Ben Joseph, R., Lapidat, M., Cohen, S.H., 1996. UV-absorbing Plastic Sheets Protect Crops from Insect Pests and from Virus Diseases Vectored by Insects. Environ Entomol, 25(5), 919–924.
  • 35. Harmanto, M., Tantau, H.J., Salokhe, V.M., 2006. Microclimate and Air Exchange Rates in Greenhouses Covered with Different Nets in the Humid Tropics. Biosystems Eng., 94(2), 239-253.
  • 36. Teitel, M., 2006. The Effect of Screens on the Micro Climate of Greenhouses and Screen Houses-a Review. Acta Hortic, 719, 575–586.
  • 37. Bailey, B.J., Montero, J.J., Peres Parra, J., Robertson, A.P., Baeza, E., Kamaruddin, R., 2003. Air Flow Resistance of Greenhouse Ventilators with and Without Screen. Biosystems Eng., 86(2), 217–229.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

A. Nafi Baytorun Bu kişi benim 0000-0002-5971-6893

Mahamed Abdalla Makauy Abass Bu kişi benim 0000-0002-6614-1784

Yayımlanma Tarihi 29 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 1

Kaynak Göster

APA Baytorun, A. N., & Makauy Abass, M. A. (2022). Seralarda Doğal Havalandırma Açıklıklarının Belirlenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(1), 67-78. https://doi.org/10.21605/cukurovaumfd.1094980