Araştırma Makalesi
BibTex RIS Kaynak Göster

Piezoelektrik Levha Viskoz Akışkan ve Rijit Duvardan Oluşan Sistemin Zorlanmış Titreşimine Akışkan Özelliklerinin Etkisi

Yıl 2022, Cilt: 37 Sayı: 1, 197 - 208, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1095044

Öz

Bu çalışmada piezoelektrik plak, viskoz akışkan ve rijit duvardan oluşan bir sisteme, harmonik bir mekanik kuvvet uygulandığında ortaya çıkan titreşime viskoz akışkan özelliklerinin etkisi incelenmiştir. Plağın hareketi, doğrusallaştırılmış elektro-elastisite teorisinin kesin denklemleri ile ifade edilmiştir. Akışkan akımı ise doğrusallaştırılmış Navier-Stokes denklemleri ile yazılmıştır. Plakta düzlem şekil değiştirme durumunun olduğu, akışkanın ise düzlemsel akış yaptığı varsayılmıştır. Problemin matematiksel formülasyonunu ifade eden denklemlere, sınır ve uygunluk koşullarına, plağın uzunluğu yönündeki koordinata göre Fourier dönüşümü uygulanmıştır. Ters Fourier dönüşümü ise sayısal olarak hesaplanmıştır. İncelenen hidro-piezoelektrik sistem farklı akışkanlar için ele alınmış ve akışkanın özelliklerinin, plak ve akışkan ara yüzeyindeki basınç değeri üzerindeki etkisi araştırılmıştır. Sonuçlar tartışılmış ve akışkanın viskozitesinin artmasının, ara yüzeydeki basıncı mutlak değerce arttırdığı gözlemlenmiştir. Bu araştırmanın, özellikle farklı mühendislik alanlarında yapılan enerji hasadı
çalışmalarına katkıda bulunması amaçlanmıştır.

Kaynakça

  • 1. Lamb, H., 1921. Axisymmetric Vibration of Circular Plates in Contact with Water. Proceedings of The Royal Society (London) A, 98, 205–216.
  • 2. McLachlan, N., 1932. The Accession to Inertia of Flexible Discs Vibrating in a Fluid. Proceedings of the Physical Society (London), 44, 546–555.
  • 3. Amabili, M., Kwak, M., 1996. Free Vibrations of Circular Plates Coupled with Liquids: Revising the Lamb Problem. Journal of Fluids and Structures, 7, 743– 761.
  • 4. Kwak, H., Kim, K., 1991. Axisymmetric Vibration of Circular Plates in Contact with Water. Journal of Sound and Vibration, 146, 381–389.
  • 5. Kwak, M., 1997. Hydroelastic Vibration of Circular Plates (Fourier-Bessel Series Approach). Journal of Sound and Vibration, 201, 293–303.
  • 6. Athanassoulis, G., Mamis, K., 2012. An Onshore Hydro/piezo/electric System and its Application to Energy Harvesting from Sea Waves. The 2012 World Congress on Advances in Civil, Environmental and Materials Research (ACEM’ 12), 368–387.
  • 7. Renzi, E., 2016. Hydro-electromechanical Modelling of a Piezoelectric Wave Energy Converter. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 472, 2195.
  • 8. Cho, J., Jeong, S., 2017. Design of Hydro Electromagnetic and Piezoelectric Energy Harvesters for a Smart Water Meter System. Sensors and Actuators A: Physical, 261(1), 261–267.
  • 9. Zakaria, H., Loon, C., 2018. The Application of Piezoelectric Sensor as Energy Harvester from Small-Scale Hydropower. International Conference on Civil and Enviromental Engineering (ICCEE 2018), 65.
  • 10. Huang, Y., Hsu, H., 2016. Solid-Liquid Coupled Vibration Characteristics of Piezoelectric Hydroacoustic Devices. Sensors and Actuators A: Physical, 238, 177–195.
  • 11. Kuznetsova, I., Zaitsev, B., Borodina, I., 2011. Study of the Hydroacoustic Emitter Based on the Antisymmetric Lamb Wave in a Piezoelectric Ceramic Plate. Journal of Communications Technology and Electronics, 56(11), 1382–1386.
  • 12. Sharapov, V., Zhanna, S., Kunickaya, L., 2014. Piezo-electric, Electro-Acoustic Transducers, Springer, New York, USA.
  • 13. Le, Q.L., Capsal, J.F., Lallart, M., Hebrard, Y., Ham, A.V.D., Reffe, N., Geynet, L., Cottinet, P.J., 2015. Review on Energy Harvesting for Structural Health Monitoring in Aeronautical Applications. Progress in Aerospace, 79, 147–157.
  • 14. Akbarov, S.D., 2018. Forced Vibration of the Hydro-viscoelastic and -Elastic Systems Consisting of the Viscoelastic or Elastic Plate, Compressible Viscous Fluid and Rigid Wall: a Review. Appl. Comput. Math. 17(3), 221-245.
  • 15. Ekicioğlu Küzeci, Z., 2020. Piezoelektrik Levha, Viskoz Akışkan ve Rijit Duvardan Oluşan Sistemin Zorlanmış Titreşimi. Doktora Tezi, YTÜ Fen Bilimleri Enstitüsü.
  • 16. Akbarov, S., Ismailov, M., Aliyev, A., 2017. The Influence of the Initial Strains of the Highly Elastic Plate on the Forced Vibration of the Hydro-Elastic System Consisting of this Plate, Compressible Viscous Fluid, and Rigid Wall. Coupled System Mechanics, 6(4), 287–316.

Effect of Fluid Properties on Forced Vibration of the System Consisting of Piezoelectric Plate, Viscous Fluid and Rigid Wall

Yıl 2022, Cilt: 37 Sayı: 1, 197 - 208, 29.03.2022
https://doi.org/10.21605/cukurovaumfd.1095044

Öz

This study investigates the mechanical forced vibration of the system which consists the piezoelectricplate, viscous fluid and rigid wall. The exact equations of motion of the linear electro-elasticity theory for piezoelectric materials are used to describe the plate motion, however, the fluid flow is described by using the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered in this study and the corresponding mathematical problems are solved by applying the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the plate-lying direction. The inverse Fourier transforms are determined numerically. The vibration of the examined hydro-piezoelectric system is analyzed with different fluids and the influence of fluid properties on pressure value at the plate and fluid interface is investigated. Numerical results are presented and discussed. In particular, it is established that an increase in the fluid viscosity causes to increase the amplitude of the interface normal stress. This investigation aims to contribute energy harvesting studies especially in different engineering areas.

Kaynakça

  • 1. Lamb, H., 1921. Axisymmetric Vibration of Circular Plates in Contact with Water. Proceedings of The Royal Society (London) A, 98, 205–216.
  • 2. McLachlan, N., 1932. The Accession to Inertia of Flexible Discs Vibrating in a Fluid. Proceedings of the Physical Society (London), 44, 546–555.
  • 3. Amabili, M., Kwak, M., 1996. Free Vibrations of Circular Plates Coupled with Liquids: Revising the Lamb Problem. Journal of Fluids and Structures, 7, 743– 761.
  • 4. Kwak, H., Kim, K., 1991. Axisymmetric Vibration of Circular Plates in Contact with Water. Journal of Sound and Vibration, 146, 381–389.
  • 5. Kwak, M., 1997. Hydroelastic Vibration of Circular Plates (Fourier-Bessel Series Approach). Journal of Sound and Vibration, 201, 293–303.
  • 6. Athanassoulis, G., Mamis, K., 2012. An Onshore Hydro/piezo/electric System and its Application to Energy Harvesting from Sea Waves. The 2012 World Congress on Advances in Civil, Environmental and Materials Research (ACEM’ 12), 368–387.
  • 7. Renzi, E., 2016. Hydro-electromechanical Modelling of a Piezoelectric Wave Energy Converter. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 472, 2195.
  • 8. Cho, J., Jeong, S., 2017. Design of Hydro Electromagnetic and Piezoelectric Energy Harvesters for a Smart Water Meter System. Sensors and Actuators A: Physical, 261(1), 261–267.
  • 9. Zakaria, H., Loon, C., 2018. The Application of Piezoelectric Sensor as Energy Harvester from Small-Scale Hydropower. International Conference on Civil and Enviromental Engineering (ICCEE 2018), 65.
  • 10. Huang, Y., Hsu, H., 2016. Solid-Liquid Coupled Vibration Characteristics of Piezoelectric Hydroacoustic Devices. Sensors and Actuators A: Physical, 238, 177–195.
  • 11. Kuznetsova, I., Zaitsev, B., Borodina, I., 2011. Study of the Hydroacoustic Emitter Based on the Antisymmetric Lamb Wave in a Piezoelectric Ceramic Plate. Journal of Communications Technology and Electronics, 56(11), 1382–1386.
  • 12. Sharapov, V., Zhanna, S., Kunickaya, L., 2014. Piezo-electric, Electro-Acoustic Transducers, Springer, New York, USA.
  • 13. Le, Q.L., Capsal, J.F., Lallart, M., Hebrard, Y., Ham, A.V.D., Reffe, N., Geynet, L., Cottinet, P.J., 2015. Review on Energy Harvesting for Structural Health Monitoring in Aeronautical Applications. Progress in Aerospace, 79, 147–157.
  • 14. Akbarov, S.D., 2018. Forced Vibration of the Hydro-viscoelastic and -Elastic Systems Consisting of the Viscoelastic or Elastic Plate, Compressible Viscous Fluid and Rigid Wall: a Review. Appl. Comput. Math. 17(3), 221-245.
  • 15. Ekicioğlu Küzeci, Z., 2020. Piezoelektrik Levha, Viskoz Akışkan ve Rijit Duvardan Oluşan Sistemin Zorlanmış Titreşimi. Doktora Tezi, YTÜ Fen Bilimleri Enstitüsü.
  • 16. Akbarov, S., Ismailov, M., Aliyev, A., 2017. The Influence of the Initial Strains of the Highly Elastic Plate on the Forced Vibration of the Hydro-Elastic System Consisting of this Plate, Compressible Viscous Fluid, and Rigid Wall. Coupled System Mechanics, 6(4), 287–316.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zeynep Ekicioğlu Küzeci 0000-0003-1487-6321

Yayımlanma Tarihi 29 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 1

Kaynak Göster

APA Ekicioğlu Küzeci, Z. (2022). Piezoelektrik Levha Viskoz Akışkan ve Rijit Duvardan Oluşan Sistemin Zorlanmış Titreşimine Akışkan Özelliklerinin Etkisi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(1), 197-208. https://doi.org/10.21605/cukurovaumfd.1095044