Bu çalışmada; çevre atık yükü düşük ve sürdürülebilir doğal malzeme olan meyan kökü alternatif FR materyali olarak kullanılmıştır. %100 pamuklu ve %50 CO/%50 PES karışım dokuma kumaşların alev geciktirici özellikleri meyan kökü ve ticari organik fosfor-nitrojen ve fosfor içeren bileşikler kullanılarak iyileştirilmiştir. Pamuk ve pamuk/poliester karışım kumaş numunelerinin termal bozunma davranışı dikey yanma testi, limit oksijen indeksi (LOI) ve termogravimetrik analizi (TGA) ile karakterize edilmiştir. Ham ve uygulanmış kumaşın yüzey morfolojisi taramalı elektron mikroskobu (SEM) kullanılarak incelenmiştir. Sonuç olarak; meyan kökünden elde edilen ekstraktlarla yapılan emdirme ve kaplama işlemlerinin pamuk ve pamuk/poliester karışımlı kumaşların termal dayanım özelliklerinde iyileşme sağlamıştır. Kumaşların alev alması için ortamda bulunması gereken oksijen miktarında olumlu yönde artış sağladığı, kumaş morfolojisinde olumsuz herhangi bir etkiye sebep olmadığı tespit edilmiştir. Sonuç olarak, meyan kökü ekstraktlarının kullanılması kumaşın alev alabilirliğinin önemli ölçüde artmasına neden olmuştur.
1. Horrocks, A.R., B.K. Kandola, P.J., Davies, 2005. Developments in Flame Retardant Textiles. A Review Polymer Degradation and Stability, 88 (1), 3-12.
2. Golja, B., Šumiga, B., Boh, P., Bojana, Medved, J., Pušić, T., Tavčer, P., 2014. Application of Flame Retardant Microcapsules to Polyester and Cotton Fabrics. Material in Technologije, 48(1), 105-111.
3. Ceylan, Ö., Alongi, J., Landuyti, L.V., Fraches, A., Clerck, K.D., 2013. Combustion Characteristics of Cellulosic Loose Fibres. Fire and Materials, 37(6), 482-490.
4. Wang, Q., Qian, Y., Wang, Q., Yang, Y., Ji, S., Song, W., Ye, M., 2015. Metabolites Identification of Bioactive Licorice Compounds in Rats. Journal of Pharmaceutical and Biomedical Analysis, 115, 515–522.
5. Wang, N., Wu, Y., Mi, L., Zhang, J., Li, X., Fang, Q., 2014. The Affect of Silicone Shell on Double-layered Microcapsules in Intumescent Flame-retardant Natural Rubber Composites. J Therm Ana Calorim, 118, 349–357.
6. Zhou, T.C., He, X.M., Guo, C., Jian, Y., Dalian, L., Qun, Y., 2015. Synthesis of a Novel Flame Retardant Phosphorus/ nitrogen/ siloxane and its Application on Cotton Fabrics. Textile Research Journal, 85, 701–708.
7. Liao, F., Zhou, L., 2014. Synthesis of a Novel Phosphorus Nitrogen-silicon Polymeric Flame Retardant and its Application in Poly (Lactic Acid). Ind Eng Chem Res, 53, 10015–10023.
8. Masatoshi, I., Serizawa, S., 1998. Silicone Derivatives as New Flame Retardants for Aromatic Thermoplastics Used in Electronic Devices. Polymers for Advanced Technologies, 9, 593-600.
9. Cao, J.P., Zhao, X., Zhao, J., Zha, J.W., Hu G.H., Dang, Z.M., 2013. Improved Thermal Conductivity and Flame Retardancy in Polystyrene/poly (Vinylidene Fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC. ACS Appl. Mater. Interfaces, 5, 6915-6924.
10. Liao, F., Zhou, L. Ju, Y., Yang, Y., Wang, X., 2014. Synthesis of A Novel Phosphororus-nitrogen-silicon Polymeric Flame Retardant and its Application in Poly (lactic acid). Ind. Eng. Chem. Res., 53, 10015-10023.
11. Lu, S.Y., Hamerton I., 2002. Recent Developments in the Chemistry of Halogen-free Flame Retardant Polymers. Progress in Polymer Science, 27(8), 1661-1712.
12. Liu, Y.L., Hsiue, G.H., Lan, C.W., Chiu, Y.S., 1997. Phosphorus-containing Epoxy for Flame Retardance: IV. Kinetics and Mechanism of Thermal Degradation. Polymer Degradation and Stability, 56(3), 291-299.
14. Banks, M., Ebdon, J.R., Johnson, M., 1994. The Flame-retardant Effect of Diethyl Vinyl Phosphonate in Copolymers with Styrene Methyl Methacrylate Acrylonitrile and Acrylamide. Polymer, 35, 3470-3473.
16. Wu, C.S., Liu, Y.L., Chiu, Y.S., 2002. Epoxy Resins Possessing Flame Retardant Elements from Silicon Incorporated Epoxy Compounds Cured with Phosphorus or Nitrogen Containing Curing Agents. Polymer, 43, 4277-4284.
17. Horrocks, A.R., 2011. Flame Retardant Challenges for Textiles and Fibres: New Chemistry Versus. Polymer Degradation and Stability., 96, 377-392.
18. Kandola, B.K., Hull, T.R., 2009. Fire Retardancy of Polymers: New Strategies and Mechanisms. West Midlands: Royal Society of Chemistry, 456.
19. Horrocks, A.R., Price, D., 2008. Advances in Fire Retardant Materials., Elsevier.
20. Hou, A., Gang, S., 2013. Multifunctional Finishing of Cotton Fabrics with 3,3’, 4,4’-Benzophenone Tetracarboxylic Dianhydride: Reaction Mechanism. Carbohydrate Polymers, 95(2), 768-772.
21. Hou, A., Zhang, C., Wang, Y., 2012. Preparation and UV-protective Properties of Functional Cellulose Fabrics Based on Reactive Azobenzene Schiff Base Derivative. Carbohydr. Polym., 87, 284-288.
22. Pawlowski, K.H., Schartel, B., 2007. Flame Retardancy Mechanisms of Triphenyl Phosphate, Resorcinol Bis (Diphenyl Phosphate) and Bisphenol A Bis (Diphenyl Phosphate) in Polycarbonate/acrylonitrile- butadiene-styrene Blends. Polymer International, 56, 1404.
23.http://www.umweltdanten.de/publikationen/pdf/1988.pdf (on September 2008).
24. http://www.andrianos.com/fire-retardant.pdf (on October 2009).
25. Balaban, Ç.F., 2019. Bitkisel Atık Ekstraktlarıyla Yapılan Kaplama ve Emdirme İşlemlerinin Güç Tutuşurluk Üzerine Etkisinin İncelenmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Namık Kemal Üniversitesi, Tekirdağ, Turkey, 60.
30. Ömeroğulları, Z., Kut, D., 2011. Investigation of Burning Behavior of Polyester Fabric with Using Natural Structured Flame Retardant Agent. Tekstil ve Konfeksiyon, 21(4), 364-368.
31. El-Tahlawy, K., 2008. Chitosan Phosphate: A New Way for Production of Ecofriendly Flame Retardant Cotton Textiles. Journal of the Textile Institute, 99(3), 185-191.
32. Basak, S., Samanta, K., Saxena, S., Chattopadhyay, S.K., Narkar, R., Mahangade, R., Hadge, G.B., 2015. Flame Resistant Cellulosic Substrate Using Banana Pseudostem Sap. Polish Journal of Chemical Technology, 11(1), 123–133.
33. Faheem, S., Baheti, V., Tunak, M., Wiener, J., Militky, J., 2017. Comparative Performance of Flame Retardancy, Physiological Comfortand Durability of Cotton Textiles Treated with Alkaline and Acidic Casein Suspension. Journal of Industrial Textiles, 48(6), 969-991.
38. El-Tahlawy, K., 2008. Chitosan Phosphate: A New Way for Production of Ecofriendly Flame Retardant Cotton Textiles. Journal of the Textile Institute, 99(3), 185-191.
39. Zhong, H., Wei, P., Jiang, P., Wang, G., 2007. Thermal Degradation Behaviors and Flame Retardancy of PC/ABS with Novel Silicon-containing Flame Retardant., Fire Mater, 31, 411–23
40. Chen, C.H., Kuo, W.S., Lai, L.S., 2009. Rheological and Physical Characterization of Film-forming Solutions and Edible Films from Tapioca Starch/decolorized Hsian-tsao Leaf Gum, Food Hydrocoll., 23, 2132–2140.
41. Soderling, E., Karjalainen, S., Lille, M., Maukonen, J., Saarela, M., Autio, K., 2006. The Effect of Liquorice Extract-containing Starch Gel on the Amount and Microbial Composition of Plaque. Clin Oral Investig, 10, 108-13
42. Li, Q., Jiang, P.K., Su, Z.P., Wei, P., Wang, G.L., Tang, X.Z., 2005. Synergistic Effect of Phosphorus, Nitrogen, and Silicon on Flame-retardant Properties and Char Yield in Polypropylene. Journal of Applied Polymer Science, 96, 854-860.
43. ASTM D 2863-97, 1999. Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle Using an Oxygen Consumption Calorimeter. ASTM, West Conshohocken, PA.
44. Tesoro, G.G., Sello, S.B., Willard, J.J., 1969. Nitrogen-phosphorus Synergism in Flame-retardart Cellulose., Text. Res. J., 39, 180–190. 45. Atakan, R., Bical, A., Celebi, E., Özcan, G., Soydan, N., Saraç, A.S., 2019. Development of a Flame Retardant Chemical for Finishing of Cotton, Polyester and CO/PET Blends, Journal of Industrial Textiles,49(2),141-161.
46. Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G., 2004. A Study of Pyrolysis and Pyrolysis Products of Flame Retardant Cotton Fabrics by DSC, TGA and PY-GC-MS. Journal of Analytical and Applied Pyrolysis, 71(2), 645-655.
47. Levchik, S.V., Weil, E.D., 2006. A Review of Recent Progress in Phosphorus-based Flame Retardants. J Fire Sci, 24, 345-364.
48. Siriviriyanum, A., O`rear, E.A., Yanumet, N., 2008. Self Extunguishing Cotton Fabric with Minimal Phosphorous Deposition. Cellulose, 15, 731-737.
49. Masatoshi, I., Serizawa, S., 1998. Silicone Derivatives as New Flame Retardants for Aromatic Thermoplastics Used in Electronic Devices. Polymers for Advanced Technologies, 9, 593-600.
50. Cao, J.P., Zhao, X., Zhao, J., Zha, J.W., Hu, G.H., Dang, Z.M., 2013. Improved Thermal Conductivity and Flame Retardancy in Polystyrene/poly (Vinylidene Fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC. ACS Appl. Mater. Interfaces, 5, 6915-6924.
51. Liao, F., Zhou, L., Ju, Y., Yang, Y., Wang, X., 2014. Synthesis of a Novel Phosphororus-nitrogen-silicon Polymeric Flame Retardant and its Application in Poly (Lactic Acid). Ind. Eng. Chem. Res. 53, 10015-10023.
52. Lu, S.Y., Hamerton, I., 2002. Recent Developments in the Chemistry of Halogen-free Flame Retardant Polymers. Journal Progress in Polymer Science, 27, 1661-1712.
53. Liu, Y.L., Hsiue, G.H., Lan, C.W., Chiu, Y.S., 1997. Phosphorus-containing Epoxy for Flame Retardance. 4. Kinetics and Mechanism of Thermal Degradation. Polymer Degradation and Stability, 56, 291-299.
55. Banks, M., Ebdon, J.R., Johnson, M., 1994. The Flame-retardant Effect of Diethyl Vinyl Phosphonate in Copolymers with Styrene Methyl Methacrylate Acrylonitrile and Acrylamide. Polymer, 35(16), 3470-3473.
57. Jarvis, C.W., Barker, R.H., 1978. Flammability of Cotton-polyester Blend Fabrics. In M. Lewin, SM Atlas and EM Pearce (Eds), Flame-retardant Polymeric Materials, 133-158. New York: Plenum Press.
Kütüphaneme Ekle
Investigation of Flame Retardancy Effect of Licorice Root Extract on Cotton and Cotton-Polyester Blended Fabrics
In this study; licorice root, which is a sustainable natural material with a low environmental waste load, is used as an alternative fire retardant (FR) material. Flammable retardancy properties of 100% cotton and 50% cotton-50% polyester blended woven fabrics were researched by using licorice root and commercial organic phosphorus-nitrogen and phosphorus including compounds. Flame retardancy and thermal decay behaviour of the cotton and cotton/polyester blended fabric samples were qualified by the vertical burning test, limiting oxygen index (LOI), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The findings revealed that licorice root extracts enhanced the thermal behavior of the cotton and cotton/polyester blended fabrics after padding and coating processes. The practices increased the amount of oxygen demand for combustion in the environment and besides they did not change the morphological properties of the fabric samples. As a result, the usage of licorice root extracts considerably improved the fabric’s flammability under test.
1. Horrocks, A.R., B.K. Kandola, P.J., Davies, 2005. Developments in Flame Retardant Textiles. A Review Polymer Degradation and Stability, 88 (1), 3-12.
2. Golja, B., Šumiga, B., Boh, P., Bojana, Medved, J., Pušić, T., Tavčer, P., 2014. Application of Flame Retardant Microcapsules to Polyester and Cotton Fabrics. Material in Technologije, 48(1), 105-111.
3. Ceylan, Ö., Alongi, J., Landuyti, L.V., Fraches, A., Clerck, K.D., 2013. Combustion Characteristics of Cellulosic Loose Fibres. Fire and Materials, 37(6), 482-490.
4. Wang, Q., Qian, Y., Wang, Q., Yang, Y., Ji, S., Song, W., Ye, M., 2015. Metabolites Identification of Bioactive Licorice Compounds in Rats. Journal of Pharmaceutical and Biomedical Analysis, 115, 515–522.
5. Wang, N., Wu, Y., Mi, L., Zhang, J., Li, X., Fang, Q., 2014. The Affect of Silicone Shell on Double-layered Microcapsules in Intumescent Flame-retardant Natural Rubber Composites. J Therm Ana Calorim, 118, 349–357.
6. Zhou, T.C., He, X.M., Guo, C., Jian, Y., Dalian, L., Qun, Y., 2015. Synthesis of a Novel Flame Retardant Phosphorus/ nitrogen/ siloxane and its Application on Cotton Fabrics. Textile Research Journal, 85, 701–708.
7. Liao, F., Zhou, L., 2014. Synthesis of a Novel Phosphorus Nitrogen-silicon Polymeric Flame Retardant and its Application in Poly (Lactic Acid). Ind Eng Chem Res, 53, 10015–10023.
8. Masatoshi, I., Serizawa, S., 1998. Silicone Derivatives as New Flame Retardants for Aromatic Thermoplastics Used in Electronic Devices. Polymers for Advanced Technologies, 9, 593-600.
9. Cao, J.P., Zhao, X., Zhao, J., Zha, J.W., Hu G.H., Dang, Z.M., 2013. Improved Thermal Conductivity and Flame Retardancy in Polystyrene/poly (Vinylidene Fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC. ACS Appl. Mater. Interfaces, 5, 6915-6924.
10. Liao, F., Zhou, L. Ju, Y., Yang, Y., Wang, X., 2014. Synthesis of A Novel Phosphororus-nitrogen-silicon Polymeric Flame Retardant and its Application in Poly (lactic acid). Ind. Eng. Chem. Res., 53, 10015-10023.
11. Lu, S.Y., Hamerton I., 2002. Recent Developments in the Chemistry of Halogen-free Flame Retardant Polymers. Progress in Polymer Science, 27(8), 1661-1712.
12. Liu, Y.L., Hsiue, G.H., Lan, C.W., Chiu, Y.S., 1997. Phosphorus-containing Epoxy for Flame Retardance: IV. Kinetics and Mechanism of Thermal Degradation. Polymer Degradation and Stability, 56(3), 291-299.
14. Banks, M., Ebdon, J.R., Johnson, M., 1994. The Flame-retardant Effect of Diethyl Vinyl Phosphonate in Copolymers with Styrene Methyl Methacrylate Acrylonitrile and Acrylamide. Polymer, 35, 3470-3473.
16. Wu, C.S., Liu, Y.L., Chiu, Y.S., 2002. Epoxy Resins Possessing Flame Retardant Elements from Silicon Incorporated Epoxy Compounds Cured with Phosphorus or Nitrogen Containing Curing Agents. Polymer, 43, 4277-4284.
17. Horrocks, A.R., 2011. Flame Retardant Challenges for Textiles and Fibres: New Chemistry Versus. Polymer Degradation and Stability., 96, 377-392.
18. Kandola, B.K., Hull, T.R., 2009. Fire Retardancy of Polymers: New Strategies and Mechanisms. West Midlands: Royal Society of Chemistry, 456.
19. Horrocks, A.R., Price, D., 2008. Advances in Fire Retardant Materials., Elsevier.
20. Hou, A., Gang, S., 2013. Multifunctional Finishing of Cotton Fabrics with 3,3’, 4,4’-Benzophenone Tetracarboxylic Dianhydride: Reaction Mechanism. Carbohydrate Polymers, 95(2), 768-772.
21. Hou, A., Zhang, C., Wang, Y., 2012. Preparation and UV-protective Properties of Functional Cellulose Fabrics Based on Reactive Azobenzene Schiff Base Derivative. Carbohydr. Polym., 87, 284-288.
22. Pawlowski, K.H., Schartel, B., 2007. Flame Retardancy Mechanisms of Triphenyl Phosphate, Resorcinol Bis (Diphenyl Phosphate) and Bisphenol A Bis (Diphenyl Phosphate) in Polycarbonate/acrylonitrile- butadiene-styrene Blends. Polymer International, 56, 1404.
23.http://www.umweltdanten.de/publikationen/pdf/1988.pdf (on September 2008).
24. http://www.andrianos.com/fire-retardant.pdf (on October 2009).
25. Balaban, Ç.F., 2019. Bitkisel Atık Ekstraktlarıyla Yapılan Kaplama ve Emdirme İşlemlerinin Güç Tutuşurluk Üzerine Etkisinin İncelenmesi. Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Namık Kemal Üniversitesi, Tekirdağ, Turkey, 60.
30. Ömeroğulları, Z., Kut, D., 2011. Investigation of Burning Behavior of Polyester Fabric with Using Natural Structured Flame Retardant Agent. Tekstil ve Konfeksiyon, 21(4), 364-368.
31. El-Tahlawy, K., 2008. Chitosan Phosphate: A New Way for Production of Ecofriendly Flame Retardant Cotton Textiles. Journal of the Textile Institute, 99(3), 185-191.
32. Basak, S., Samanta, K., Saxena, S., Chattopadhyay, S.K., Narkar, R., Mahangade, R., Hadge, G.B., 2015. Flame Resistant Cellulosic Substrate Using Banana Pseudostem Sap. Polish Journal of Chemical Technology, 11(1), 123–133.
33. Faheem, S., Baheti, V., Tunak, M., Wiener, J., Militky, J., 2017. Comparative Performance of Flame Retardancy, Physiological Comfortand Durability of Cotton Textiles Treated with Alkaline and Acidic Casein Suspension. Journal of Industrial Textiles, 48(6), 969-991.
38. El-Tahlawy, K., 2008. Chitosan Phosphate: A New Way for Production of Ecofriendly Flame Retardant Cotton Textiles. Journal of the Textile Institute, 99(3), 185-191.
39. Zhong, H., Wei, P., Jiang, P., Wang, G., 2007. Thermal Degradation Behaviors and Flame Retardancy of PC/ABS with Novel Silicon-containing Flame Retardant., Fire Mater, 31, 411–23
40. Chen, C.H., Kuo, W.S., Lai, L.S., 2009. Rheological and Physical Characterization of Film-forming Solutions and Edible Films from Tapioca Starch/decolorized Hsian-tsao Leaf Gum, Food Hydrocoll., 23, 2132–2140.
41. Soderling, E., Karjalainen, S., Lille, M., Maukonen, J., Saarela, M., Autio, K., 2006. The Effect of Liquorice Extract-containing Starch Gel on the Amount and Microbial Composition of Plaque. Clin Oral Investig, 10, 108-13
42. Li, Q., Jiang, P.K., Su, Z.P., Wei, P., Wang, G.L., Tang, X.Z., 2005. Synergistic Effect of Phosphorus, Nitrogen, and Silicon on Flame-retardant Properties and Char Yield in Polypropylene. Journal of Applied Polymer Science, 96, 854-860.
43. ASTM D 2863-97, 1999. Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle Using an Oxygen Consumption Calorimeter. ASTM, West Conshohocken, PA.
44. Tesoro, G.G., Sello, S.B., Willard, J.J., 1969. Nitrogen-phosphorus Synergism in Flame-retardart Cellulose., Text. Res. J., 39, 180–190. 45. Atakan, R., Bical, A., Celebi, E., Özcan, G., Soydan, N., Saraç, A.S., 2019. Development of a Flame Retardant Chemical for Finishing of Cotton, Polyester and CO/PET Blends, Journal of Industrial Textiles,49(2),141-161.
46. Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G., 2004. A Study of Pyrolysis and Pyrolysis Products of Flame Retardant Cotton Fabrics by DSC, TGA and PY-GC-MS. Journal of Analytical and Applied Pyrolysis, 71(2), 645-655.
47. Levchik, S.V., Weil, E.D., 2006. A Review of Recent Progress in Phosphorus-based Flame Retardants. J Fire Sci, 24, 345-364.
48. Siriviriyanum, A., O`rear, E.A., Yanumet, N., 2008. Self Extunguishing Cotton Fabric with Minimal Phosphorous Deposition. Cellulose, 15, 731-737.
49. Masatoshi, I., Serizawa, S., 1998. Silicone Derivatives as New Flame Retardants for Aromatic Thermoplastics Used in Electronic Devices. Polymers for Advanced Technologies, 9, 593-600.
50. Cao, J.P., Zhao, X., Zhao, J., Zha, J.W., Hu, G.H., Dang, Z.M., 2013. Improved Thermal Conductivity and Flame Retardancy in Polystyrene/poly (Vinylidene Fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC. ACS Appl. Mater. Interfaces, 5, 6915-6924.
51. Liao, F., Zhou, L., Ju, Y., Yang, Y., Wang, X., 2014. Synthesis of a Novel Phosphororus-nitrogen-silicon Polymeric Flame Retardant and its Application in Poly (Lactic Acid). Ind. Eng. Chem. Res. 53, 10015-10023.
52. Lu, S.Y., Hamerton, I., 2002. Recent Developments in the Chemistry of Halogen-free Flame Retardant Polymers. Journal Progress in Polymer Science, 27, 1661-1712.
53. Liu, Y.L., Hsiue, G.H., Lan, C.W., Chiu, Y.S., 1997. Phosphorus-containing Epoxy for Flame Retardance. 4. Kinetics and Mechanism of Thermal Degradation. Polymer Degradation and Stability, 56, 291-299.
55. Banks, M., Ebdon, J.R., Johnson, M., 1994. The Flame-retardant Effect of Diethyl Vinyl Phosphonate in Copolymers with Styrene Methyl Methacrylate Acrylonitrile and Acrylamide. Polymer, 35(16), 3470-3473.
57. Jarvis, C.W., Barker, R.H., 1978. Flammability of Cotton-polyester Blend Fabrics. In M. Lewin, SM Atlas and EM Pearce (Eds), Flame-retardant Polymeric Materials, 133-158. New York: Plenum Press.
Koruyucu, A., & Balaban, F. Ç. (2022). Investigation of Flame Retardancy Effect of Licorice Root Extract on Cotton and Cotton-Polyester Blended Fabrics. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 351-366. https://doi.org/10.21605/cukurovaumfd.1146075