Araştırma Makalesi
BibTex RIS Kaynak Göster

CdSe ve CdSe/ZnO Filmlerin Elektrokimyasal Sentezi: Morfolojik, Yapısal ve Elektronik Özellikler

Yıl 2022, Cilt: 37 Sayı: 2, 555 - 568, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146607

Öz

CdSe filmler ITO elektrot üzerinde sabit potansiyel uygulayarak sulu çözeltide elektrokimyasal yolla hazırlanmıştır. CdSe ince filmlerin yapısal, morfolojik ve optik özellikleri FE-SEM, XRD ve UV-görünür spektrofotometri teknikleri çalışılmıştır. XRD sonuçları, CdSe filmlerin Na2SO4 destek elektroliti varlığında Cd2+ ve Se4+ içeren sulu çözeltiden kübik kristal formda biriktirildiği görülmüştür. CdSe filmlerin bant aralığı değerleri 1,88 ve 2,0 eV aralığında bulunmuştur. Geniş bant aralığına sahip ZnO dar bant aralığına sahip CdSe üzerine optoelektronik özelliklerini geliştirmek için elektrokimyasal yolla biriktirilmiştir. CdSe/ZnO nanoçubukların bant aralığı değeri 2,7 eV olarak belirlenmiştir. Mott-Schottky eşitliği malzemelerin düz bant potansiyelini (EFB) ve yük taşıyıcı yoğunluğunu (ND) hesaplamak için kullanılmıştır. ND değerleri, CdSe ve CdSe/ZnO için 1.623×1020 ve 9.186×1020 cm-3 olarak bulunmuştur. Daha yüksek kararlılık ve düşük bant aralığı sağlayan ZnO, güneş pili uygulamalarında kullanılmak için umut verici bir malzemedir.

Kaynakça

  • 1. Pulipaka, S., Boni, N., Ummethala, G., Meduri, P., 2020. CuO/CuBi2O4 Heterojunction Photocathode: High Stability and Current Densities for Solar Water Splitting. J. Catal., 387, 17-27
  • 2. Yadav, A.A., Barote, M.A, Masumdar, E.U., 2010. Photoelectrochemical Properties of Spray Deposited n-CdSe Thin Films. Sol. Energy, 84, 763-770.
  • 3. Choudhary, S., Upadhyay, S., Kumar, P., Singh, N., Satsangi, V.R., Shrivastav, R., Dass, S., 2012. Nanostructured Bilayered Thin Films in Photoelectrochemical Water Splitting-A Review. Int. J. Hydrogen Energy, 37, 18713-18730.
  • 4. Mu, J., Teng, F., Miao, H., Wang, Y., Hu, X., 2020. In-situ Oxidation Fabrication of 0D/2D SnO2/SnS2 Novel Step-scheme Heterojunctions with Enhanced Photoelectrochemical Activity for Water Splitting. Appl. Surf. Sci., 501, 143974.
  • 5. Qiu, Y., Pan, Z., Chen, H., Ye, D., Guo, L., Fan, Z., Yang, S., 2019. Current Progress in Developing Metal Oxide Nanoarrays-based Photoanodes for Photoelectrochemical Water Splitting. Sci. Bull., 64, 1348-1380.
  • 6. Ma, H.P., Yang, J.H., Tao, J.J., Yuan, K.P., Cheng, P.H., Huang, W., Wang, J.C., Guo, Q.X., Lu, H.L., Zhang, D.W., 2019. Low-temperature Epitaxial Growth of High-quality GaON Films on ZnO Nanowires for Superior Photoelectrochemical Water Splitting. Nano Energy, 66, 104089.
  • 7. Sun, S., Jiaon, S., Zhang, K., Wang, D., Gao, S., Li, H., Wang, J., Yu, Q., Guo, F., Zhao, L., 2012. Nucleation Effect and Growth Mechanism of ZnO Nanostructures by Electrodeposition from Aqueous Zinc Nitrate Baths. J. Cryst. Growth, 359, 15-19.
  • 8. Lianos, P., 2011. Production of Electricity and Hydrogen by Photocatalytic Degradation of Organic Wastes in a Photoelectrochemical Cell The Concept of the Photofuelcell: A Review of a Re-emerging Research Field. J. Hazard. Mater., 185, 575-590.
  • 9. Jie, J., Zhang, W., Bello, I., Lee, C.S., Lee, S.T., 2010. One-dimensional II-VI Nanostructures: Synthesis, Properties and Optoelectronic Applications. Nano Today, 5, 313-336.
  • 10. Gudade, Y.G., Deshpande, N.G., Sagade, A.A., Sharma, R.P., Pawar, S.M., Bhosale, C.H., 2007. Photoelectrochemical (PEC) Studies on CdSe Thin Films Electrodeposited from Non-aqueous Bath on Different Substrates. Bull. Mater. Sci., 30, 321-327.
  • 11. Gholami Hatam, E., Ghobadi, N., 2016. Effect of Deposition Temperature on Structural, Optical Properties and Configuration of CdSe Nanocrystalline Thin Films Deposited by Chemical Bath Deposition. Mater. Sci. Semicond. Process., 43, 177-181.
  • 12. Mariappan, R., Ponnuswamy, V., Mohan, S.M., Suresh, P., Suresh, R., 2012. The Effect of Potential on Electrodeposited CdSe Thin Films. Mater. Sci. Semicond. Process., 15, 174-180.
  • 13. Thanikaikarasan, S., Sundaram, K., Mahalingam, T., Velumani, S., Rhee, J.K., 2010. Electrodeposition and Characterization of Fe Doped CdSe Thin Films from Aqueous Solution. Mater. Sci. Eng., B, 174, 242-248.
  • 14. Wei, S., Chen, Y., Ma, Y., Shao, Z., 2010. Fabrication of CuO/ZnO Composite Films with Cathodic Co-electrodeposition and Their Photocatalytic Performance. J. Mol. Catal. A: Chem., 331, 112-116.
  • 15. Dhara, A., Show, B., Baral, A., Chabri, S., Sinha, A., Bandyopadhyay, N.R., Mukherjee, N., 2016. Core-shell CuO-ZnO p-n Heterojunction with High Specific Surface Area for Enhanced Photoelectrochemical (PEC) Energy Conversion. Sol. Energy, 136, 327-332.
  • 16. Wei, S., Shao, Z., Lu, X., Liu, Y., Cao, L., He, Y., 2009. Photocatalytic Degradation of Methyl orange over ITO/CdS/ZnO Interface Composite Films. J. Environ. Sci., 21, 991-996.
  • 17. Lupan, O., Pauporte, T., Chow, L., Viana, B., Pelle, F., Ono, L.K., Roldan, Cuenya, B., Heinrich, H., 2010. Effects of Annealing on Properties of ZnO Thin Films Prepared by Electrochemical Deposition in Chloride Medium. Appl. Surf. Sci., 256, 1895-1907.
  • 18. Sığırcık, G., 2017. Ni Katkılı ZnO, CdSe ve CdSe/ZnO Fotoaktif Malzeme Geliştirilmesi. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Adana, 129.
  • 19. Lai, E., Kim, W., Yang, P., 2008. Vertical Nanowire Array-based Light Emitting Diodes. Nano Res., 1, 123-128.
  • 20. Fang, J., Fan, H., Tian, H., Dong, G., 2015. Morphology Control of ZnO Nanostructures for High Efficient Dye-sensitized Solar Cells. Mater. Charact., 108, 51-57.
  • 21. Bai, S., Sun, C., Guo, T., Luo, R., Lin, Y., Chen, A., Sun, L., Zhang, J., 2013. Low Temperature Electrochemical Deposition of Nanoporous ZnO Thin Films as Novel NO2 Sensors. Electrochim. Acta, 90, 530-534.
  • 22. Liu, Z., Bai, H., Xu, S., Delai, Sun, D., 2011. Hierarchical CuO/ZnO “Corn-like” Architecture for Photocatalytic Hydrogen Generation. Int. J. Hydrogen Energy, 36, 13473-13480.
  • 23. Lin, Y., Yang, J., Zhou, X., 2011. Controlled Synthesis of Oriented ZnO Nanorod Arrays by Seed-layer-free Electrochemical Deposition. Appl. Surf. Sci., 258, 1491-1494.
  • 24. Nikam, P.R., Baviskar, P.K., Sali, J.V., Gurav, K.V., Kim, J.H., Sankapal, B.R., 2015. SILAR Coated Bi2S3 Nanoparticles on Vertically Aligned ZnO Nanorods: Synthesis and Characterizations. Ceram. Int., 41, 10394-10399.
  • 25. Pourbaix, M., 1974. Atlas of Electrochemical Equilibria in Aqueous Solution. Second Edition. NACE Pub., Houston.
  • 26. Kois, J., Bereznev, S., Volobujeva, O., Gurevits, J., Mellikov, E., 2011. Electrocrystallization of CdSe from Aqueous Electrolytes: Structural Arrangement from Thin Films to Self-assembled Nanowires. J. Cryst. Growth, 320, 9-12.
  • 27. Bienkowski, K., Strawski, M., Maranowski, B., Szklarczyk, M., 2010. Studies of Stoichiometry of Electrochemically Grown CdSe Deposits. Electrochim. Acta, 55, 8908-8915.
  • 28. Powder Diffraction File 00-019-0191, International Center for Diffraction Data.
  • 29. Klug, H.P., Alexander, L.E., 1974. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 2nd Edition, Wiley, New York.
  • 30. Dhanam, M., Prabhu, R.R., Manoj, P.K., 2008. Investigations on Chemical Bath Deposited Cadmium Selenide Thin Films. Mater. Chem. Phys., 107, 289-296.
  • 31. Aragonès, A.C., Palacios-Padrós, A., Caballero-Briones F., Sanz F., 2013. Study and Improvement of Aluminium Doped ZnO Thin Films: Limits and Advantages. Electrochim. Acta, 109, 117-124.
  • 32. Shyju, T.S., Anandhi, S., Indirajith, R., Gopalakrishnan, R., 2011. Solvothermal Synthesis, Deposition and Characterization of Cadmium Selenide (CdSe) Thin Films by Thermal Evaporation Technique. J. Cryst. Growth, 337, 38-45.
  • 33. Pawar, S.A., Patil, D.S., Suryawanshi, M.P., Ghorpade, U.V., Lokhande, A.C., Park, J.Y., Chalapathy R.B.V., Shin J.C., Patil P.S., Kim J.H., 2016. Effect of Different Annealing Environments on the Solar Cell Performance of CdSe Pebbles. Acta Mater., 108, 152-160.
  • 34. Zhao, Y., Yan, Z., Liu, J., Wei, A., 2013. Synthesis and Characterization of CdSe Nanocrystalline Thin Films Deposited by Chemical Bath Deposition. Mater. Sci. Semicond. Process., 16, 1592-1598.
  • 35. Zi, M., Zhu, M., Chen, L., Wei, H., Yang, X., Cao, B., 2014. ZnO Photoanodes with Different Morphologies Grown by Electrochemical Deposition and their Dye-Sensitized Solar Cell Properties. Ceram. Int., 40, 7965-7970.
  • 36. Xue, B., Liang, Y., Donglai, L., Eryong, N., Congli, S., Huanhuan, F., Jingjing, X., Yong, J., Zhifeng J., Xiaosong S., 2011. Electrodeposition from ZnO Nano-rods to Nano-sheets with only Zinc Nitrate Electrolyte and its Photoluminescence. Appl. Surf. Sci., 257, 10317-10321.
  • 37. Powder Diffraction File 00-036-1451, International Center for Diffraction Data.
  • 38. Cullity, B.D. and Stock, S.R., 2001. Elements of X-Ray Diffraction. 3rd Edition, Prentice Hall Inc., New Jersey.
  • 39. Li, H., Yao, C., Meng, L., Sun, H., Huang, J., Gong Q., 2013. Photoelectrochemical Performance of Hydrogenated ZnO/CdS Core-Shell Nanorod Arrays. Electrochim. Acta, 108, 45-50.
  • 40. Ahn, K.S., Deutsch, T., Yan, Y., Jiang, C.S., Perkins, C.L., Turner, J., Al-Jassim, M., 2007. Synthesis of Band-gap-reduced p-type ZnO Films by Cu Incorporation. J. Appl. Phys., 102:023517, 1-6.
  • 41. Liu, H., Piret, G., Sieber, B., Laureyns, J., Roussel, P., Xu, W., Boukherrou, R., Szunerits, S., 2009. Electrochemical Impedance Spectroscopy of ZnO Nanostructures. Electrochem. Commun., 11, 945-949.
  • 42. Rokade, A., Rondiya, S., Sharma, V., Prasad, M., Pathan, H., Jadkar, S., 2017. Electrochemical Synthesis of 1D ZnO Nanoarchitectures and their Role in Efficient Photoelectrochemical Splitting of Water. J. Solid State Electrochem., 21, 2639-2648.

Electrochemical Synthesis of CdSe and CdSe/ZnO Films: Morphological, Structural and Electronic Properties

Yıl 2022, Cilt: 37 Sayı: 2, 555 - 568, 30.06.2022
https://doi.org/10.21605/cukurovaumfd.1146607

Öz

CdSe films were electrochemically prepared on ITO electrode in aqueous solution applying a constant potential. Structural, morphological and optical features of CdSe thin films were examined with FE-SEM, XRD and UV-visible spectrophotometry techniques. XRD results revealed CdSe films were deposited, in the form of cubic crystals from aqueous solution of Cd2+ and Se4+, in presence of Na2SO4 supporting electrolyte. Band gap values of CdSe films were found between 1.88 and 2.0 eV. Wide band gap ZnO was electrochemically deposited on narrow band gap CdSe to improve its optoelectronic properties. Band gap value of CdSe/ZnO nanonorods was determined as 2.7 eV. Mott-Schottky equation was utilized to calculate flat band potential (EFB), as well as charge carrier density (ND) of materials. ND values were found as 1.623×1020 and 9.186×1020 cm-3 for CdSe and CdSe/ZnO, respectively. ZnO offers higher stability and lower band gap is promising material to be utilized in solar cell applications.

Kaynakça

  • 1. Pulipaka, S., Boni, N., Ummethala, G., Meduri, P., 2020. CuO/CuBi2O4 Heterojunction Photocathode: High Stability and Current Densities for Solar Water Splitting. J. Catal., 387, 17-27
  • 2. Yadav, A.A., Barote, M.A, Masumdar, E.U., 2010. Photoelectrochemical Properties of Spray Deposited n-CdSe Thin Films. Sol. Energy, 84, 763-770.
  • 3. Choudhary, S., Upadhyay, S., Kumar, P., Singh, N., Satsangi, V.R., Shrivastav, R., Dass, S., 2012. Nanostructured Bilayered Thin Films in Photoelectrochemical Water Splitting-A Review. Int. J. Hydrogen Energy, 37, 18713-18730.
  • 4. Mu, J., Teng, F., Miao, H., Wang, Y., Hu, X., 2020. In-situ Oxidation Fabrication of 0D/2D SnO2/SnS2 Novel Step-scheme Heterojunctions with Enhanced Photoelectrochemical Activity for Water Splitting. Appl. Surf. Sci., 501, 143974.
  • 5. Qiu, Y., Pan, Z., Chen, H., Ye, D., Guo, L., Fan, Z., Yang, S., 2019. Current Progress in Developing Metal Oxide Nanoarrays-based Photoanodes for Photoelectrochemical Water Splitting. Sci. Bull., 64, 1348-1380.
  • 6. Ma, H.P., Yang, J.H., Tao, J.J., Yuan, K.P., Cheng, P.H., Huang, W., Wang, J.C., Guo, Q.X., Lu, H.L., Zhang, D.W., 2019. Low-temperature Epitaxial Growth of High-quality GaON Films on ZnO Nanowires for Superior Photoelectrochemical Water Splitting. Nano Energy, 66, 104089.
  • 7. Sun, S., Jiaon, S., Zhang, K., Wang, D., Gao, S., Li, H., Wang, J., Yu, Q., Guo, F., Zhao, L., 2012. Nucleation Effect and Growth Mechanism of ZnO Nanostructures by Electrodeposition from Aqueous Zinc Nitrate Baths. J. Cryst. Growth, 359, 15-19.
  • 8. Lianos, P., 2011. Production of Electricity and Hydrogen by Photocatalytic Degradation of Organic Wastes in a Photoelectrochemical Cell The Concept of the Photofuelcell: A Review of a Re-emerging Research Field. J. Hazard. Mater., 185, 575-590.
  • 9. Jie, J., Zhang, W., Bello, I., Lee, C.S., Lee, S.T., 2010. One-dimensional II-VI Nanostructures: Synthesis, Properties and Optoelectronic Applications. Nano Today, 5, 313-336.
  • 10. Gudade, Y.G., Deshpande, N.G., Sagade, A.A., Sharma, R.P., Pawar, S.M., Bhosale, C.H., 2007. Photoelectrochemical (PEC) Studies on CdSe Thin Films Electrodeposited from Non-aqueous Bath on Different Substrates. Bull. Mater. Sci., 30, 321-327.
  • 11. Gholami Hatam, E., Ghobadi, N., 2016. Effect of Deposition Temperature on Structural, Optical Properties and Configuration of CdSe Nanocrystalline Thin Films Deposited by Chemical Bath Deposition. Mater. Sci. Semicond. Process., 43, 177-181.
  • 12. Mariappan, R., Ponnuswamy, V., Mohan, S.M., Suresh, P., Suresh, R., 2012. The Effect of Potential on Electrodeposited CdSe Thin Films. Mater. Sci. Semicond. Process., 15, 174-180.
  • 13. Thanikaikarasan, S., Sundaram, K., Mahalingam, T., Velumani, S., Rhee, J.K., 2010. Electrodeposition and Characterization of Fe Doped CdSe Thin Films from Aqueous Solution. Mater. Sci. Eng., B, 174, 242-248.
  • 14. Wei, S., Chen, Y., Ma, Y., Shao, Z., 2010. Fabrication of CuO/ZnO Composite Films with Cathodic Co-electrodeposition and Their Photocatalytic Performance. J. Mol. Catal. A: Chem., 331, 112-116.
  • 15. Dhara, A., Show, B., Baral, A., Chabri, S., Sinha, A., Bandyopadhyay, N.R., Mukherjee, N., 2016. Core-shell CuO-ZnO p-n Heterojunction with High Specific Surface Area for Enhanced Photoelectrochemical (PEC) Energy Conversion. Sol. Energy, 136, 327-332.
  • 16. Wei, S., Shao, Z., Lu, X., Liu, Y., Cao, L., He, Y., 2009. Photocatalytic Degradation of Methyl orange over ITO/CdS/ZnO Interface Composite Films. J. Environ. Sci., 21, 991-996.
  • 17. Lupan, O., Pauporte, T., Chow, L., Viana, B., Pelle, F., Ono, L.K., Roldan, Cuenya, B., Heinrich, H., 2010. Effects of Annealing on Properties of ZnO Thin Films Prepared by Electrochemical Deposition in Chloride Medium. Appl. Surf. Sci., 256, 1895-1907.
  • 18. Sığırcık, G., 2017. Ni Katkılı ZnO, CdSe ve CdSe/ZnO Fotoaktif Malzeme Geliştirilmesi. Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı, Adana, 129.
  • 19. Lai, E., Kim, W., Yang, P., 2008. Vertical Nanowire Array-based Light Emitting Diodes. Nano Res., 1, 123-128.
  • 20. Fang, J., Fan, H., Tian, H., Dong, G., 2015. Morphology Control of ZnO Nanostructures for High Efficient Dye-sensitized Solar Cells. Mater. Charact., 108, 51-57.
  • 21. Bai, S., Sun, C., Guo, T., Luo, R., Lin, Y., Chen, A., Sun, L., Zhang, J., 2013. Low Temperature Electrochemical Deposition of Nanoporous ZnO Thin Films as Novel NO2 Sensors. Electrochim. Acta, 90, 530-534.
  • 22. Liu, Z., Bai, H., Xu, S., Delai, Sun, D., 2011. Hierarchical CuO/ZnO “Corn-like” Architecture for Photocatalytic Hydrogen Generation. Int. J. Hydrogen Energy, 36, 13473-13480.
  • 23. Lin, Y., Yang, J., Zhou, X., 2011. Controlled Synthesis of Oriented ZnO Nanorod Arrays by Seed-layer-free Electrochemical Deposition. Appl. Surf. Sci., 258, 1491-1494.
  • 24. Nikam, P.R., Baviskar, P.K., Sali, J.V., Gurav, K.V., Kim, J.H., Sankapal, B.R., 2015. SILAR Coated Bi2S3 Nanoparticles on Vertically Aligned ZnO Nanorods: Synthesis and Characterizations. Ceram. Int., 41, 10394-10399.
  • 25. Pourbaix, M., 1974. Atlas of Electrochemical Equilibria in Aqueous Solution. Second Edition. NACE Pub., Houston.
  • 26. Kois, J., Bereznev, S., Volobujeva, O., Gurevits, J., Mellikov, E., 2011. Electrocrystallization of CdSe from Aqueous Electrolytes: Structural Arrangement from Thin Films to Self-assembled Nanowires. J. Cryst. Growth, 320, 9-12.
  • 27. Bienkowski, K., Strawski, M., Maranowski, B., Szklarczyk, M., 2010. Studies of Stoichiometry of Electrochemically Grown CdSe Deposits. Electrochim. Acta, 55, 8908-8915.
  • 28. Powder Diffraction File 00-019-0191, International Center for Diffraction Data.
  • 29. Klug, H.P., Alexander, L.E., 1974. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 2nd Edition, Wiley, New York.
  • 30. Dhanam, M., Prabhu, R.R., Manoj, P.K., 2008. Investigations on Chemical Bath Deposited Cadmium Selenide Thin Films. Mater. Chem. Phys., 107, 289-296.
  • 31. Aragonès, A.C., Palacios-Padrós, A., Caballero-Briones F., Sanz F., 2013. Study and Improvement of Aluminium Doped ZnO Thin Films: Limits and Advantages. Electrochim. Acta, 109, 117-124.
  • 32. Shyju, T.S., Anandhi, S., Indirajith, R., Gopalakrishnan, R., 2011. Solvothermal Synthesis, Deposition and Characterization of Cadmium Selenide (CdSe) Thin Films by Thermal Evaporation Technique. J. Cryst. Growth, 337, 38-45.
  • 33. Pawar, S.A., Patil, D.S., Suryawanshi, M.P., Ghorpade, U.V., Lokhande, A.C., Park, J.Y., Chalapathy R.B.V., Shin J.C., Patil P.S., Kim J.H., 2016. Effect of Different Annealing Environments on the Solar Cell Performance of CdSe Pebbles. Acta Mater., 108, 152-160.
  • 34. Zhao, Y., Yan, Z., Liu, J., Wei, A., 2013. Synthesis and Characterization of CdSe Nanocrystalline Thin Films Deposited by Chemical Bath Deposition. Mater. Sci. Semicond. Process., 16, 1592-1598.
  • 35. Zi, M., Zhu, M., Chen, L., Wei, H., Yang, X., Cao, B., 2014. ZnO Photoanodes with Different Morphologies Grown by Electrochemical Deposition and their Dye-Sensitized Solar Cell Properties. Ceram. Int., 40, 7965-7970.
  • 36. Xue, B., Liang, Y., Donglai, L., Eryong, N., Congli, S., Huanhuan, F., Jingjing, X., Yong, J., Zhifeng J., Xiaosong S., 2011. Electrodeposition from ZnO Nano-rods to Nano-sheets with only Zinc Nitrate Electrolyte and its Photoluminescence. Appl. Surf. Sci., 257, 10317-10321.
  • 37. Powder Diffraction File 00-036-1451, International Center for Diffraction Data.
  • 38. Cullity, B.D. and Stock, S.R., 2001. Elements of X-Ray Diffraction. 3rd Edition, Prentice Hall Inc., New Jersey.
  • 39. Li, H., Yao, C., Meng, L., Sun, H., Huang, J., Gong Q., 2013. Photoelectrochemical Performance of Hydrogenated ZnO/CdS Core-Shell Nanorod Arrays. Electrochim. Acta, 108, 45-50.
  • 40. Ahn, K.S., Deutsch, T., Yan, Y., Jiang, C.S., Perkins, C.L., Turner, J., Al-Jassim, M., 2007. Synthesis of Band-gap-reduced p-type ZnO Films by Cu Incorporation. J. Appl. Phys., 102:023517, 1-6.
  • 41. Liu, H., Piret, G., Sieber, B., Laureyns, J., Roussel, P., Xu, W., Boukherrou, R., Szunerits, S., 2009. Electrochemical Impedance Spectroscopy of ZnO Nanostructures. Electrochem. Commun., 11, 945-949.
  • 42. Rokade, A., Rondiya, S., Sharma, V., Prasad, M., Pathan, H., Jadkar, S., 2017. Electrochemical Synthesis of 1D ZnO Nanoarchitectures and their Role in Efficient Photoelectrochemical Splitting of Water. J. Solid State Electrochem., 21, 2639-2648.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gökmen Sığırcık Bu kişi benim 0000-0002-5457-8372

Tunç Tüken Bu kişi benim 0000-0002-0559-2848

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 2

Kaynak Göster

APA Sığırcık, G., & Tüken, T. (2022). Electrochemical Synthesis of CdSe and CdSe/ZnO Films: Morphological, Structural and Electronic Properties. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(2), 555-568. https://doi.org/10.21605/cukurovaumfd.1146607