Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Strengths and Swelling Pressures in Freeze-Thaw Effect of Clay Soils Improved by Guar Gum

Yıl 2022, Cilt: 37 Sayı: 3, 589 - 600, 17.10.2022
https://doi.org/10.21605/cukurovaumfd.1189181

Öz

Nowadays, the areas of use of organic and environmentally friendly materials such as biopolymers have been increasing rapidly due to environmental concerns. The improvement of a cohesive soil using Guar Gum (GG) was investigated in this research. For this purpose, samples were prepared by adding GG to
cohesive soil in some proportions (1%, 2%, and 3%). Specimens exposed to different numbers of freeze-thaw cycles (1, 3, 5, and 10) were cured for different times. Unconfined compression strength (UCS) and swelling pressure tests were carried out on the prepared samples. As a result, it was seen that the addition of biopolymer to the clay soils has a positive effect on strength values and swelling pressures. In addition, curing time and freeze-thaw conditions were thought to play an important role in soil improvement with the use of biopolymer.

Kaynakça

  • 1. Kumar, J.K., Kumar, V.P., 2020. Soil Stabilization Using E-waste: A Retrospective Analysis. Materials Today: Proceedings, 223, 691–693. https://doi.org/10.1016/j.matpr. 2019.09.145.
  • 2. Marto, A., Latifi, N., Eisazadeh, A., 2014. Effect of Non-traditional Additives on Engineering and Microstructural Characteristics of Laterite Soil. Arabian Journal for Science and Engineering, 3910, 6949–6958. https://doi.org/10.1007/s13369-014-1286-1.
  • 3. Kampala, A., Horpibulsuk, S., Prongmanee, N., Chinkulkijniwat A., 2014. Influence of Wet-dry Cycles on Compressive Strength of Calcium Carbide Residue-fly Ash Stabilized Clay, Journal of Materials in Civil Engineering, 264, 633–643. https://doi.org/10.1061/ASCEMT.1943-5533.0000853.
  • 4. Arulrajah, A., Mohammadinia, A., Phummiphan, I., Horpibulsuk, S., Samingthong, W., 2016. Stabilization of Recycled Demolition Aggregates by Geopolymers Comprising Calcium Carbide, Fly Ash and Slag Precursors. Construction and Building Materials, 114, 864–873. https://doi.org/10.1016/j.conbuildmat.2016.03. 150.
  • 5. Dash, S.K., Hussain, M., 2012. Lime Stabilization of Soils: Reappraisal. Journal of Materials in Civil Engineering, 246, 707-714. https://doi.org/10.1061/ASCEMT.1943-5533.0000431.
  • 6. Cristelo, N., Glendinning, S., Fernandes, L., Pinto, A.T., 2013. Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilization. Acta Geotechnica, 84, 395–405. https://doi.org/10.1007/s11440-012-0200-9.
  • 7. Du, Y.J., Horpibulsuk, S., Wei, M.L., Suksiripattanapong, C., Liu, M.D., 2014. Modeling Compression Behavior of Cement-treated Zinc-contaminated Clayey Soils. Soils and Foundations, 545, 1018–1026. https://doi.org/10.1016/j.sandf.2014.09.007.
  • 8. Tingle, J.S., Santoni, R.L., 2003. Stabilization of Clay Soils with Nontraditional Additives. Journal of the Transportation Research Board, 18191, 72–84. https://doi.org/10.3141/1819b-10.
  • 9. Sarici, T., 2019. Evaluation of Usability of Pozzolan Reinforced Construction and Demolition Wastes as a Granular Fill, [Doctoral thesis]. Inonu University Graduate School of Natural and Applied Sciences, 310. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • 10. Najah, L., Ahmed, F.B., Said, M.A.M., 2013. Influence of Polymer on Properties of Soils. Electronic Journal of Geotechnical Engineering, 18, 1909-1915. http://www.ejge. com/2013/Abs2013.183.htm.
  • 11.Junior, A.L.O., Juca, J.F.T., Ferreira, J.A., Guliharme, L.C., 2019. Geotechnical Behavior and Soil-fiber Interaction of Clayey Soil Mixed with Randomly Dispersed Coconut Fibers. Soils and Rocks, 422, 127-138. https://doi.org/10.28927/SR.422127.
  • 12. Menezes, L.C.P., Sousa, D.P., Fucale, S., Ferreira S.R.M., 2019. Analysis of the Physical-mechanical Behavior of Clayey Sand Soil Improved with Coir Fiber. Soils and Rocks, 421, 31-42. https://doi.org/10.28927/SR.421031.
  • 13. Vik, E.A., Sverdrup, L., Kelley, A., Storhaug, R., Beitnes, A., Boge, K., Grepstad, G.K., Tveiten, V., 2000. Experiences from Environmental Risk Management of Chemical Grouting Agents Used During Construction of the Romeriksporten Tunnel. Tunn Undergr Space Technol 154, 369–378.
  • 14. Oss, H.G., Padovani, A.C., 2003. Cement Manufacture and the Environment, Part II: Environmental Challenges and Opportunities. J Ind Ecol 71, 93–126.
  • 15. Shafigh, P., Bin Mahmud, H., Jumaat, M.Z., Zargar, M., 2014. Agricultural Wastes as Aggregate in Concrete Mixtures: a Review. Constr Build Mater 53, 110–117.
  • 16. Worrell, E., Price, L., Martin, N., Hendriks, C., Meida L.O., 2001. Carbon Dioxide Emissions from the Global Cement Industry. Annual Review of Energy and the Environment, 26, 303-329.xhttps://doi.org/10.1146/annurev.energy. 26.1.303.
  • 17. Afolabi, A., Francis, F.A., Adejompo, F. 2012. Assessment of Health and Environmental Challenges of Cement Factory on Ewekoro Community Residents, Ogun State Nigeria. American Journal of Human Ecology, 12, 51-57. https://doi.org/10.11634/21679622150479.
  • 18.Chang, I., Prasidhi, A.K., Im, J., Cho, G., 2015. Soil Strengthening Using Thermo-gelation Biopolymers. Construction and Building Materials, 77, 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
  • 19. Mascarenha, M.M.A., Neto, M.P.C., Matos T.H.C., Chagas, J.V.R., Rezende, L.R., 2018. Effects of the Addition of Dihydrate Phosphogypsum on the Characterization and Mechanical Behavior of Lateritic Clay. Soils and Rocks, 412, 157-170. https://doi.org/10.28927/SR.412157.
  • 20.Cole, D.M., Ringelberg, D.B., Reynolds, C.M., 2012. Small-scale Mechanical Properties of Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 1389, 1063–1074. https://doi.org/10.1061/ASCEGT.1943-5606.0000680.
  • 21.Ivanov, V., Chu, J., 2008. Applications of Microorganisms to Geotechnical Engineering for Biologging and Biocementation of Soil in situ. Reviews in Environmental Science and Bio/Technology, 72, 139–153. https://doi.org/10.1007/S11157-007-9126-3.
  • 22. Mitchell, J.K., Santamarina, J.C., 2005. Biological Considerations in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 13110, 1222–1233. https://doi.org/10.1061/ASCE1090-02412005131:101222.
  • 23.Chang, I., Cho, G., 2011. Strengthening of Korean Residual Soil with b-1,3/1,6-glucan Biopolymer. Construction and Building Materials, 30, 30–35. https://doi.org/10.1016/ j.conbuildmat.2011.11.030.
  • 24.Chang, I., Im, J., Cho, G., 2016. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-friendly and Sustainable Geotechnical Engineering. Sustainability, 83, 1-23. https://doi.org/ 10.3390/su8030251.
  • 25. Khatami, H.R., O'Kelly B.C., 2013. Improving Mechanical Properties of Sand Using Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 1398, 1402–1406. https://doi.org/10.1061/ASCEGT .1943-5606.0000861.
  • 26. Ayeldeen, M.K., Negm, A.M., El Sawwaf, M.A., 2016. Evaluating the Physical Characteristics of Biopolymer/soil Mixtures. Arabian Journal of Geosciences, 9, 1-13. https://doi.org/10.1007/s12517-016-2366-1.
  • 27.Im, J., Tran, T.P.A., Chang, I., Cho G., 2017. Dynamic Properties of Gel-type Biopolymer-Treated Sands Evaluated by Resonant Column (RC) Tests. Geomechanics and Engineering, 12(5), 815-830. https://doi.org/10.12989/gae. 2017.12.5.815.
  • 28. Lee, S., Im, J., Cho, G., Chang I., 2019. Laboratory Triaxial Test Behavior of Xanthan gum Biopolymer Treated Sands. Geomechanics and Engineering, 175 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  • 29.Cabalar, A.F., Wiszniewski, M., Stunik, Z., 2017. Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behavior of a Sand. Soil Mechanics and Foundation Engineering, 546, 356–361. https://doi.org/10.1007/s11204-017-9481-1.
  • 30. Fatehi, H., Abtahi, S.M., Hashemolhosseini, H., Hejazi S.M., 2018. A Novel Study on Using Protein Based Biopolymers in Soil Strengthening. Construction and Building Materials, 167, 813–821. https://doi.org/10.1016/j.conbuildmat.2018.02.028.
  • 31. Soldo, A., Miletic, M., Auad, M.L., 2020. Biopolymers as a Sustainable Solution for the Enhancement of Soil Mechanical Properties. Scientific Reports, 10, 267. https://doi.org/10.1038/s41598-019-57135-x.
  • 32. Sujatha, E.R., Saisree S., 2019. Geotechnical Behaviour of Guar Gum-treated Soil. Soils and Foundations, 596, 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.
  • 33. Bagriacik, B., Ok, B., Kahiyah, M. T. M. A., 2021. An Experimental Study on Improvement of Cohesive Soil with Eco-friendly Guar Gum. Soils and Rocks, 44(2), 1-9.
  • 34. ASTM D6913-04. 2004. Standard Test Methods for Particle-Size Distribution Gradation of Soils Using Sieve Analysis, ASTM International, West Conshohocken, PA www.astm.org.
  • 35. ASTM D854-14. 2014. Standard Test Methods For Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, www.astm.org.
  • 36. ASTM D4318-17e1. 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.astm.org.
  • 37. ASTM D2487-17e1. 2017. Standard Practice for Classification of Soils For Engineering Purposes Unified Soil Classification System, ASTM International, West Conshohocken, PA, 2017, www.astm.org.
  • 38. ASTM D698-12e2. 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort 12 400 ft-lbf/ft3 600 kN-m/m3, ASTM International, West Conshohocken, PA, www.astm.org
  • 39. ASTM E 2809. 2013. Standard Guide for Using Scanning Electron Microscopy/X-Ray Spectrometry in Forensic Paint Examinations. ASTM International, West Conshohocken, PA. https://www.astm.org.
  • 40. Whistler, R.L., Hymowitz, T., 1980. Guar: Agronomy, Production, Industrial Use, And Nutrition. Purdue University Press. https://doi.org/10.2307/2806779.
  • 41.Risica, D., Barbetta, A., Vischetti, L., Cametti, C., Dentini, M., 2010. Rheological Properties of Guar And Its Methyl, Hydroxypropyl And Hydroxypropyl-Methyl Derivatives in Semi Dilute And Concentrated Aqueous Solutions. Polymer, 519, 1972–1982. https://doi.org/10.1016/j.polymer.2010.02.041.
  • 42. Sharma, R., Kaith, B.S., Kalia, S., Pathania, D., Kumar, A., Sharma, N., Street, R.M., Schauer, C., 2015. Biodegradable and Conducting Hydrogels Based on Guar Gum Polysaccharide for Antibacterial and Dye Removal Applications. Journal of Environmental Management. 162, 37–45. https://doi.org/10.1016/j.jenvman.2015.07.044.
  • 43. What is in Your Food? Guar Gum. [https://www.chroniclesinhealth.com/?s=guar+gum].
  • 44.Bağrıaçık, B., Mahmutluoğlu B., 2021. Model Experiments on Coarse-Grained Soils Treated with Xanthan Gum Biopolymer. Arabian Journal of Geosciences, 14(1621), 1-14., Doi:10.1007/s12517-021-08134-8
  • 45. Kahiyah, M.T.M.A. 2020. Investigation of Engineering Properties of Clayey Soils Improved with Biopolymers [MSc Thesis]. Cukurova University Institute of Natural and Applied Sciences. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • 46. ASTM D2166 / D2166M-16. 2016. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, www.astm.org.
  • 47. Mahmutluoğlu, B., Bağrıaçık, B., 2020. Atık Lastik Parçalarıyla Güçlendirilmiş Killi Zeminlerin Donma Çözülme Davranışı. Çukurova Üniversitesi, Mühendislik Fakültesi Dergisi, 35(3), 783-795.
  • 48. Ghazavi M., Roustaie M., 2010. The Influence of Freeze-thaw Cycles on The Unconfined Compressive Strength of Fiber-reinforced Clay. Cold Regions Science and Technology, 61, 125-131.
  • 49. Hazirbaba, K., Zhang, Y., Hulsey, J.L., 2011. Evaluation of Temperature and Freeze-thaw Effects on Excess Pore Pressure Generation of Fine-grained Soils. Soil Dynamics and Earthquake Engineering, 31, 372-384.
  • 50. Zaimoğlu, A.Ş., Hattatoğlu, F., Akbulut, R.K., 2013. Yüke Maruz İnce Taneli Zeminlerin Donma-Çözülme Davranışı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 117-121.
  • 51. Liu, Y., Chang, C.W., Namdar, A., She, Y., Lin, C.H., Yuan, X., Yang, Q., 2019. Stabilization of Expansive Soil Using Cementing Material From Rice Husk Ash and Calcium Carbide Residue. Construction and Building Materials, 221, 1-11.

Guar Gum ile İyileştirilen Kil Zeminlerin Donma Çözülme Etkisinde Mukavemet ve Şişme Basınçlarının Araştırılması

Yıl 2022, Cilt: 37 Sayı: 3, 589 - 600, 17.10.2022
https://doi.org/10.21605/cukurovaumfd.1189181

Öz

Son yıllarda çevresel kaygılardan dolayı biyopolimerler gibi organik ve çevre dostu malzemelerin kullanım alanları hızla artmaktadır. Bu çalışmada bir biopolimer olan Guar Gum kullanılarak kohezyonlu bir zeminin iyileştirilmesi araştırılmıştır. Bu amaçla kohezyonlu bir zemine belli oranlarda (%1, %2 ve %3) guar gum karıştırılarak numuneler hazırlanmıştır. Numuneler farklı sürelerde kür edilmiş ve farklı sayılarda (1, 3, 5, 10) donma çözülmeye tabi tutulmuştur. Çalışmada Guar Gum’un karışım oranı ile kür süresi ve donma çözülmenin serbest basınç mukavemeti ve şişme basıncı üzerindeki etkileri araştırılmıştır. Sonuç olarak, biyopolimer katkı malzemesinin kohezyonlu bir zeminin serbest basınç mukavemeti ve şişme basıncı üzerinde olumlu etkileri olduğu belirlenmiştir. Ayrıca bu etkilerin kür süresi ve donma çözülme ile önemli ölçüde değiştiği elde edilmiştir.

Kaynakça

  • 1. Kumar, J.K., Kumar, V.P., 2020. Soil Stabilization Using E-waste: A Retrospective Analysis. Materials Today: Proceedings, 223, 691–693. https://doi.org/10.1016/j.matpr. 2019.09.145.
  • 2. Marto, A., Latifi, N., Eisazadeh, A., 2014. Effect of Non-traditional Additives on Engineering and Microstructural Characteristics of Laterite Soil. Arabian Journal for Science and Engineering, 3910, 6949–6958. https://doi.org/10.1007/s13369-014-1286-1.
  • 3. Kampala, A., Horpibulsuk, S., Prongmanee, N., Chinkulkijniwat A., 2014. Influence of Wet-dry Cycles on Compressive Strength of Calcium Carbide Residue-fly Ash Stabilized Clay, Journal of Materials in Civil Engineering, 264, 633–643. https://doi.org/10.1061/ASCEMT.1943-5533.0000853.
  • 4. Arulrajah, A., Mohammadinia, A., Phummiphan, I., Horpibulsuk, S., Samingthong, W., 2016. Stabilization of Recycled Demolition Aggregates by Geopolymers Comprising Calcium Carbide, Fly Ash and Slag Precursors. Construction and Building Materials, 114, 864–873. https://doi.org/10.1016/j.conbuildmat.2016.03. 150.
  • 5. Dash, S.K., Hussain, M., 2012. Lime Stabilization of Soils: Reappraisal. Journal of Materials in Civil Engineering, 246, 707-714. https://doi.org/10.1061/ASCEMT.1943-5533.0000431.
  • 6. Cristelo, N., Glendinning, S., Fernandes, L., Pinto, A.T., 2013. Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilization. Acta Geotechnica, 84, 395–405. https://doi.org/10.1007/s11440-012-0200-9.
  • 7. Du, Y.J., Horpibulsuk, S., Wei, M.L., Suksiripattanapong, C., Liu, M.D., 2014. Modeling Compression Behavior of Cement-treated Zinc-contaminated Clayey Soils. Soils and Foundations, 545, 1018–1026. https://doi.org/10.1016/j.sandf.2014.09.007.
  • 8. Tingle, J.S., Santoni, R.L., 2003. Stabilization of Clay Soils with Nontraditional Additives. Journal of the Transportation Research Board, 18191, 72–84. https://doi.org/10.3141/1819b-10.
  • 9. Sarici, T., 2019. Evaluation of Usability of Pozzolan Reinforced Construction and Demolition Wastes as a Granular Fill, [Doctoral thesis]. Inonu University Graduate School of Natural and Applied Sciences, 310. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • 10. Najah, L., Ahmed, F.B., Said, M.A.M., 2013. Influence of Polymer on Properties of Soils. Electronic Journal of Geotechnical Engineering, 18, 1909-1915. http://www.ejge. com/2013/Abs2013.183.htm.
  • 11.Junior, A.L.O., Juca, J.F.T., Ferreira, J.A., Guliharme, L.C., 2019. Geotechnical Behavior and Soil-fiber Interaction of Clayey Soil Mixed with Randomly Dispersed Coconut Fibers. Soils and Rocks, 422, 127-138. https://doi.org/10.28927/SR.422127.
  • 12. Menezes, L.C.P., Sousa, D.P., Fucale, S., Ferreira S.R.M., 2019. Analysis of the Physical-mechanical Behavior of Clayey Sand Soil Improved with Coir Fiber. Soils and Rocks, 421, 31-42. https://doi.org/10.28927/SR.421031.
  • 13. Vik, E.A., Sverdrup, L., Kelley, A., Storhaug, R., Beitnes, A., Boge, K., Grepstad, G.K., Tveiten, V., 2000. Experiences from Environmental Risk Management of Chemical Grouting Agents Used During Construction of the Romeriksporten Tunnel. Tunn Undergr Space Technol 154, 369–378.
  • 14. Oss, H.G., Padovani, A.C., 2003. Cement Manufacture and the Environment, Part II: Environmental Challenges and Opportunities. J Ind Ecol 71, 93–126.
  • 15. Shafigh, P., Bin Mahmud, H., Jumaat, M.Z., Zargar, M., 2014. Agricultural Wastes as Aggregate in Concrete Mixtures: a Review. Constr Build Mater 53, 110–117.
  • 16. Worrell, E., Price, L., Martin, N., Hendriks, C., Meida L.O., 2001. Carbon Dioxide Emissions from the Global Cement Industry. Annual Review of Energy and the Environment, 26, 303-329.xhttps://doi.org/10.1146/annurev.energy. 26.1.303.
  • 17. Afolabi, A., Francis, F.A., Adejompo, F. 2012. Assessment of Health and Environmental Challenges of Cement Factory on Ewekoro Community Residents, Ogun State Nigeria. American Journal of Human Ecology, 12, 51-57. https://doi.org/10.11634/21679622150479.
  • 18.Chang, I., Prasidhi, A.K., Im, J., Cho, G., 2015. Soil Strengthening Using Thermo-gelation Biopolymers. Construction and Building Materials, 77, 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
  • 19. Mascarenha, M.M.A., Neto, M.P.C., Matos T.H.C., Chagas, J.V.R., Rezende, L.R., 2018. Effects of the Addition of Dihydrate Phosphogypsum on the Characterization and Mechanical Behavior of Lateritic Clay. Soils and Rocks, 412, 157-170. https://doi.org/10.28927/SR.412157.
  • 20.Cole, D.M., Ringelberg, D.B., Reynolds, C.M., 2012. Small-scale Mechanical Properties of Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 1389, 1063–1074. https://doi.org/10.1061/ASCEGT.1943-5606.0000680.
  • 21.Ivanov, V., Chu, J., 2008. Applications of Microorganisms to Geotechnical Engineering for Biologging and Biocementation of Soil in situ. Reviews in Environmental Science and Bio/Technology, 72, 139–153. https://doi.org/10.1007/S11157-007-9126-3.
  • 22. Mitchell, J.K., Santamarina, J.C., 2005. Biological Considerations in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 13110, 1222–1233. https://doi.org/10.1061/ASCE1090-02412005131:101222.
  • 23.Chang, I., Cho, G., 2011. Strengthening of Korean Residual Soil with b-1,3/1,6-glucan Biopolymer. Construction and Building Materials, 30, 30–35. https://doi.org/10.1016/ j.conbuildmat.2011.11.030.
  • 24.Chang, I., Im, J., Cho, G., 2016. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-friendly and Sustainable Geotechnical Engineering. Sustainability, 83, 1-23. https://doi.org/ 10.3390/su8030251.
  • 25. Khatami, H.R., O'Kelly B.C., 2013. Improving Mechanical Properties of Sand Using Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 1398, 1402–1406. https://doi.org/10.1061/ASCEGT .1943-5606.0000861.
  • 26. Ayeldeen, M.K., Negm, A.M., El Sawwaf, M.A., 2016. Evaluating the Physical Characteristics of Biopolymer/soil Mixtures. Arabian Journal of Geosciences, 9, 1-13. https://doi.org/10.1007/s12517-016-2366-1.
  • 27.Im, J., Tran, T.P.A., Chang, I., Cho G., 2017. Dynamic Properties of Gel-type Biopolymer-Treated Sands Evaluated by Resonant Column (RC) Tests. Geomechanics and Engineering, 12(5), 815-830. https://doi.org/10.12989/gae. 2017.12.5.815.
  • 28. Lee, S., Im, J., Cho, G., Chang I., 2019. Laboratory Triaxial Test Behavior of Xanthan gum Biopolymer Treated Sands. Geomechanics and Engineering, 175 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  • 29.Cabalar, A.F., Wiszniewski, M., Stunik, Z., 2017. Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behavior of a Sand. Soil Mechanics and Foundation Engineering, 546, 356–361. https://doi.org/10.1007/s11204-017-9481-1.
  • 30. Fatehi, H., Abtahi, S.M., Hashemolhosseini, H., Hejazi S.M., 2018. A Novel Study on Using Protein Based Biopolymers in Soil Strengthening. Construction and Building Materials, 167, 813–821. https://doi.org/10.1016/j.conbuildmat.2018.02.028.
  • 31. Soldo, A., Miletic, M., Auad, M.L., 2020. Biopolymers as a Sustainable Solution for the Enhancement of Soil Mechanical Properties. Scientific Reports, 10, 267. https://doi.org/10.1038/s41598-019-57135-x.
  • 32. Sujatha, E.R., Saisree S., 2019. Geotechnical Behaviour of Guar Gum-treated Soil. Soils and Foundations, 596, 2155-2166. https://doi.org/10.1016/j.sandf.2019.11.012.
  • 33. Bagriacik, B., Ok, B., Kahiyah, M. T. M. A., 2021. An Experimental Study on Improvement of Cohesive Soil with Eco-friendly Guar Gum. Soils and Rocks, 44(2), 1-9.
  • 34. ASTM D6913-04. 2004. Standard Test Methods for Particle-Size Distribution Gradation of Soils Using Sieve Analysis, ASTM International, West Conshohocken, PA www.astm.org.
  • 35. ASTM D854-14. 2014. Standard Test Methods For Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, PA, www.astm.org.
  • 36. ASTM D4318-17e1. 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.astm.org.
  • 37. ASTM D2487-17e1. 2017. Standard Practice for Classification of Soils For Engineering Purposes Unified Soil Classification System, ASTM International, West Conshohocken, PA, 2017, www.astm.org.
  • 38. ASTM D698-12e2. 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort 12 400 ft-lbf/ft3 600 kN-m/m3, ASTM International, West Conshohocken, PA, www.astm.org
  • 39. ASTM E 2809. 2013. Standard Guide for Using Scanning Electron Microscopy/X-Ray Spectrometry in Forensic Paint Examinations. ASTM International, West Conshohocken, PA. https://www.astm.org.
  • 40. Whistler, R.L., Hymowitz, T., 1980. Guar: Agronomy, Production, Industrial Use, And Nutrition. Purdue University Press. https://doi.org/10.2307/2806779.
  • 41.Risica, D., Barbetta, A., Vischetti, L., Cametti, C., Dentini, M., 2010. Rheological Properties of Guar And Its Methyl, Hydroxypropyl And Hydroxypropyl-Methyl Derivatives in Semi Dilute And Concentrated Aqueous Solutions. Polymer, 519, 1972–1982. https://doi.org/10.1016/j.polymer.2010.02.041.
  • 42. Sharma, R., Kaith, B.S., Kalia, S., Pathania, D., Kumar, A., Sharma, N., Street, R.M., Schauer, C., 2015. Biodegradable and Conducting Hydrogels Based on Guar Gum Polysaccharide for Antibacterial and Dye Removal Applications. Journal of Environmental Management. 162, 37–45. https://doi.org/10.1016/j.jenvman.2015.07.044.
  • 43. What is in Your Food? Guar Gum. [https://www.chroniclesinhealth.com/?s=guar+gum].
  • 44.Bağrıaçık, B., Mahmutluoğlu B., 2021. Model Experiments on Coarse-Grained Soils Treated with Xanthan Gum Biopolymer. Arabian Journal of Geosciences, 14(1621), 1-14., Doi:10.1007/s12517-021-08134-8
  • 45. Kahiyah, M.T.M.A. 2020. Investigation of Engineering Properties of Clayey Soils Improved with Biopolymers [MSc Thesis]. Cukurova University Institute of Natural and Applied Sciences. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp.
  • 46. ASTM D2166 / D2166M-16. 2016. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, www.astm.org.
  • 47. Mahmutluoğlu, B., Bağrıaçık, B., 2020. Atık Lastik Parçalarıyla Güçlendirilmiş Killi Zeminlerin Donma Çözülme Davranışı. Çukurova Üniversitesi, Mühendislik Fakültesi Dergisi, 35(3), 783-795.
  • 48. Ghazavi M., Roustaie M., 2010. The Influence of Freeze-thaw Cycles on The Unconfined Compressive Strength of Fiber-reinforced Clay. Cold Regions Science and Technology, 61, 125-131.
  • 49. Hazirbaba, K., Zhang, Y., Hulsey, J.L., 2011. Evaluation of Temperature and Freeze-thaw Effects on Excess Pore Pressure Generation of Fine-grained Soils. Soil Dynamics and Earthquake Engineering, 31, 372-384.
  • 50. Zaimoğlu, A.Ş., Hattatoğlu, F., Akbulut, R.K., 2013. Yüke Maruz İnce Taneli Zeminlerin Donma-Çözülme Davranışı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 117-121.
  • 51. Liu, Y., Chang, C.W., Namdar, A., She, Y., Lin, C.H., Yuan, X., Yang, Q., 2019. Stabilization of Expansive Soil Using Cementing Material From Rice Husk Ash and Calcium Carbide Residue. Construction and Building Materials, 221, 1-11.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Bahadır Ok Bu kişi benim 0000-0002-1860-2881

Baki Bağrıaçık Bu kişi benim 0000-0001-8333-5671

Yayımlanma Tarihi 17 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 3

Kaynak Göster

APA Ok, B., & Bağrıaçık, B. (2022). Guar Gum ile İyileştirilen Kil Zeminlerin Donma Çözülme Etkisinde Mukavemet ve Şişme Basınçlarının Araştırılması. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(3), 589-600. https://doi.org/10.21605/cukurovaumfd.1189181