Araştırma Makalesi
BibTex RIS Kaynak Göster

Ni-B/TiC Nanokompozit Kaplamaların Korozyon Dayanımlarının Elektrokimyasal Empedans Spektroskopisi (EES) Yöntemi ile Analizi

Yıl 2023, Cilt: 38 Sayı: 1, 115 - 130, 30.03.2023
https://doi.org/10.21605/cukurovaumfd.1273741

Öz

Makine parçaları korozyon ve aşınma gibi malzeme yüzeylerinde hasara neden olan çeşitli etkilere maruz kalmaktadır. Malzeme yüzeylerinin bu zararlı etkilerden korunması için çeşitli ve etkili yöntemler bulunmaktadır. Elektrokimyasal kaplama bu yöntemlerden en çok tercih edilenlerden bir tanesidir. Bu çalışmada, Ni-B alaşımı ana yapısı titanyum karbür (TiC) takviye parçacıkları ile desteklenerek, sanayide kullanımı çok tercih edilen AISI 304 kalite paslanmaz çelik üzerine elektrokimyasal depolama metodu ile kaplanmıştır. Elde edilen bu kaplamaların korozyon dayanımları elektrokimyasal empedans spektroskopisi (EES) yöntemi ile analiz edilmiştir. Mukayese yapmak amacıyla paslanmaz çelik altlığın korozyon direncinin yanı sıra, saf nikel ve Ni-B alaşım kaplamalarda üretilmiş ve korozyon direnci incelenmiştir. Elde edilen sonuçlara göre, Ni-B/TiC nanokompozit kaplamaların Nyquist eğrilerinin, paslanmaz çelik, saf nikel ve Ni-B alaşıma göre çok daha kapsayıcı ve geniş görünümlü olduğu tespit edilmiştir. Aynı zamanda Bode grafiğindeki nanokompozit kaplamalara ait faz açısı değerleri de yine çok daha yüksek elde edilmiştir. Nyquist eğrilerinin eş değer devre uydurma işlemiyle hesaplanan korozyon direnç değerlerine göre, en iyi korozyon dayanımını 12 g/l TiC banyo parçacık içerikli nano kompozit numune sergilemiştir. Bu numunenin direnç değeri paslanmaz çeliğe göre ~%280, saf nikele göre ~%235, Ni-B alaşıma göre ise ~%307 civarlarında daha yüksek elde edilmiştir. Elde edilen bu sonuçlara göre, Ni-B alaşımını TiC ile takviye etmenin korozyondan korunma açısından son derece etkili olduğu anlaşılmıştır.

Kaynakça

  • ⦁ Doğan, F., Duru, E., Uysal, M., Akbulut, H., Aslan, S., 2022. Tribology Study of Pulse Electrodeposited Ni-B-SWCNT Composite Coating. JOM, 74, 574-583.
  • ⦁ Desen, C., Lan Zhang, L., Zhu, Y., Xia, H., Li, N., Song, W., Bai, H., Ma, H., 2022. Preparation and Properties of Electrodeposited Ni-B-Graphene Oxide Composite Coatings. Materials, 15(6), 2287.
  • ⦁ Qiu, C., Liu, D., Jin, K., Fang, L., Sha, T., 2017. Corrosion Resistance and Micro-Tribological Properties of Nickel Hydroxide-Graphene Oxide Composite Coating. Diamond and Related Materials, 76, 150-156.
  • ⦁ Zhang, D., Cui, X., Jin, G., Cai, Z., Lu, B., 2018. Microstructure and Mechanical Properties of Electro-Brush Plated Fe/MWCNTs Composite Coatings. Surface and Coatings Technology, 348, 97-103.
  • ⦁ Li, B., Mei, T., Li, D., Du, S., 2019. Ultrasonic-assisted Electrodeposition of Ni-Cu/TiN Composite Coating from Sulphate-citrate Bath: Structural and Electrochemical Properties. Ultrasonics Sonochemistry, 58, 104680.
  • ⦁ Kumaraguru, S., Kumar, G.G., Raghu, S., Gnanamuthu, R.M., 2018. Fabrication of Ternary Ni-TiO2-TiC Composite Coatings and Their Enhanced Microhardness for Metal Finishing Application. Applied Surface Science, 447, 463-470.
  • ⦁ Li, H., He, Y., He, T., Fan, Y., Yang, Q., Zhan, Y., 2016. The Influence of Pulse Plating Parameters on Microstructure and Properties of Ni-W-Si3N4 Nanocomposite Coatings. Ceramics International, 42, 18380-18392.
  • ⦁ Sheu, H.H., Tzeng, Y.C., Syu, J.H., 2019. Study of the Strengthening Mechanism of Electrodeposited Ni-B Thin Films with Ultra-Low Boron Content. Materials Letters, 238, 275-277.
  • ⦁ Shakoor, R.A., Kahraman, R., Waware, U.S., Wang, Y., Gao, W., 2014. Synthesis and Properties of Electrodeposited Ni-B-Zn Ternary Alloy Coatings. International Journal of Electrochemical Science, 9, 5520.
  • ⦁ Tozar, A., 2020. Investigating The Hexadecylamine as A New Nonionic Surfactant Candidate for Electrodeposition of Wear-Resistant Metal-matrix Composites. Surface Engineering, 36(9), 990-999.
  • ⦁ Shakoor, R.A., Kahraman, R., Waware, U.S., Wang, Y., Gao, W., 2014. Synthesis and Properties of Electrodeposited Ni-B-CeO2 Composite Coatings. Materials and Design, 59, 421-429.
  • ⦁ Doğan, F., Uysal, M., Duru, E., Akbulut, H., Aslan, S., 2020. Pulsed Electrodeposition of Ni-B/TiN Composites: Effect of Current Density on The Structure, Mechanical, Tribological, and Corrosion Properties. Journal of Asian Ceramic Societies, 8(4), 1271-1284.
  • ⦁ Sheu, H.H., Wang, Q.Y., Huang, P.C., Cheng, A.Y., Liu, Y.M., Hou, K.H., Ger, M.D., 2021. Effect of Trimethylamine Borane (TMAB) on the Corrosion Resistance and Mechanical Properties of Nickel-Based Composite Coatings. International Journal of Electrochemical Science, 16, 21049.
  • ⦁ Choi, J.H., Gyawali. G., Dhakal. D. R., Joshi. B., Lee. S. W., 2020. Electrodeposited Ni-W-TiC Composite Coatings: Effect of TiC Reinforcement on Microstructural and Tribological Properties. Acta Metallurgica Sinica (English Letters), 33, 573-582.
  • ⦁ Karbasi, M., Yazdian, N., Vahidian, A., 2012. Development of Electro-Co-Deposited Ni–TiC Nano-Particle Reinforced Nanocomposite Coatings. Surface & Coatings Technology, 207, 587-593.
  • ⦁ Pandey, U., Purohit, R., Agarwal, P., Dhakad, S.K., Rana, R.S., 2017. Effect of TiC Particles on the Mechanical Properties of Aluminium Alloy Metal Matrix Composites (MMCs). Materials Today: Proceedings, 4, 5452-5460.
  • ⦁ Zhang, D., Li, J., Zheng, J., 2013. Synthesis and Electrochemical Properties of PANI-TiC Nanocomposite and its Electrocatalytic Behavior. Materials Letters, 93, 99-102.
  • ⦁ Raja, M., Bapu, G.N.K.R., Maharaja, J., Sekar, R., 2014. Electrodeposition and Characterisation of Ni-TiC Nanocomposite Using Watts Bath. Surface Engineering, 30(10), 697-701.
  • ⦁ Li, B., Zhang, W., 2020. Facile Synthesis and Electrochemical Properties of a Novel Ni-B/TiC Composite Coating via Ultrasonic-Assisted Electrodeposition. Ultrasonics-Sonochemistry, 61, 104837.
  • ⦁ Dilek, S., Algül, H., Akyol, A., Alp, A., Akbulut, H., Uysal, M., 2021. Pulse Electro Co-deposition of Submicron-Sized TiC Reinforced Ni-W Coatings: Tribological and Corrosion Properties. Journal of Asian Ceramic Societies, 9(2), 673-685.
  • ⦁ Ünal, E., Yaşar, A., Karahan, İ.H., 2019. A Review of Electrodeposited Composite Coatings with Ni-B Alloy Matrix. Materials Research Express, 6, 092004.
  • ⦁ Tozar, A., 2012. Düşük Karbonlu Çeliğin Çevreci ZnNi/Polianilin İletken Polimer ile Kaplanması ve Kaplanan Çeliğin Korozyon Davranışının İncelenmesi. Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü, 151.
  • ⦁ Dobbelaar, J.A.L., Dewit, J.H.W., 1990. Impedance Measurements and Analysis of the Corrosion of Chromium. Journal of the Electrochemical Society, 137 (7): 2038-2046.
  • ⦁ Erbil, M., 2012. Korozyon: İlkeler-Önlemler. Korozyon derneği yayını, Ankara, 373.
  • ⦁ Li, B., Zhang, W., Huan, Y., Dong, J., 2018. Synthesis and Characterization of Ni-B/Al2O3 Nanocomposite Coating by Electrodeposition Using Trimethylamine Borane as Boron Precursor. Surface & Coatings Technology, 337, 186-197.
  • ⦁ Tozar, A., Karahan, İ.H., 2019. Effect of Octylphenyl Ether Group Nonionic Surfactant on the Electrodepositon of the Hexagonal Boron Nitride Reinforced Ni-B Matrix Composite Coatings. Surface & Coatings Technology, 381, 125131.
  • ⦁ Nezhad, A.H.N., Zahrani, E.M., Alfantazi, A.M., 2022. Erosion-corrosion of Electrodeposited Superhydrophobic Ni-Al2O3 Nanocomposite Coatings Under Jet Saline-Sand Slurry Impingement. Corrosion Science, 197, 110095.
  • ⦁ Randviir, E.P., Banks, C.E., 2013. Electrochemical Impedance Spectroscopy - an Overview of Bioanalytical Applications. Analytical Methods, 5(5), 1098-1115.
  • ⦁ Mousavi, S.M.A., Pitchumani, R., 2021. A Study of Corrosion on Electrodeposited Superhydrophobic Copper Surfaces. Corrosion Science, 186, 109420.
  • ⦁ Güney, F., Kam, M., Gerengi, H., Kaya, E., Yıldız M., 2022. Farklı Bekletme Süreli Derin Kriyojenik İşlemin Sementasyon Çeliğinin Korozyon Davranışına Etkisinin Araştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9 (2), 703-712.
  • ⦁ Bekish, Y.N., Poznyak, S.K., Tsybulskaya, L.S., Gaevskaya, T.V., 2010. Electrodeposited Ni–B Alloy Coatings; Structure, Corrosion Resistance and Mechanical Properties. Electrochimica Acta, 55, 2223-2231.
  • ⦁ Shahzad, K., Radwan, A.B., Fayyaz, O., Shakoor, R.A., Uzma, M., Umer, M.A., Baig, M.N., Raza, A., 2021. Effect of Concentration of TiC on the Properties of Pulse Electrodeposited Ni-P-TiC Nanocomposite Coatings. Ceramics International, 47(13), 19123-19133.
  • ⦁ Kasturibai, S., Kalaignan, G.P., 2014. Characterizations of Electrodeposited Ni-CeO2 Nanocomposite Coatings. Materials Chemistry and Physics, 147, 1042-1048.
  • ⦁ Wang, Y., Wang, S., Shu, X., Gao, W., Lu, W., Yan, B., 2014. Preparation and Property of Sol-enhanced Ni-B-TiO2 Nano-Composite Coatings. Journal of Alloys and Compounds, 617, 472-478.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ersin Ünal Bu kişi benim 0000-0002-3183-9592

Abdulkadir Yaşar Bu kişi benim 0000-0002-1548-2386

İsmail Hakkı Karahan Bu kişi benim 0000-0002-8297-3521

Yayımlanma Tarihi 30 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 1

Kaynak Göster

APA Ünal, E., Yaşar, A., & Karahan, İ. H. (2023). Ni-B/TiC Nanokompozit Kaplamaların Korozyon Dayanımlarının Elektrokimyasal Empedans Spektroskopisi (EES) Yöntemi ile Analizi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(1), 115-130. https://doi.org/10.21605/cukurovaumfd.1273741