Araştırma Makalesi
BibTex RIS Kaynak Göster

Artificial Intelligence Predictions of Biomass Power of an Installed Waste Water Treatment Plant

Yıl 2024, Cilt: 39 Sayı: 2, 359 - 374, 11.07.2024
https://doi.org/10.21605/cukurovaumfd.1514358

Öz

In the current study, the power generations obtained from gas turbines of an installed waste water treatment plant were predicted, utilizing artificial intelligence method consisting of artificial neural network (ANN). In this regards, a cumulative of 445 data, found in the power generation data cluster and found in the physical and chemical data clusters has been used in the predictions based on the artificial intelligence association method. Each instant data of these total 445 data corresponds to daily average power generation (P) obtained from gas turbines of the facility and corresponds to physical and chemical parameters including the temperature (T), degree of acidity (pH), conductivity (σ), as well as the daily total volumetric flow of the waste gas to be burned at the gas generator (Q). Accordingly, the best prediction obtained by ANN approach was concluded to generate the statistical accuracy results corresponding to 6.1279% mean absolute percentage error (MAPE), 2.1540 MWh/day root mean square error (RMSE), and 0.9730 correlation coefficient (R) for power generation parameter.

Kaynakça

  • 1. Ilhan, A., 2022. Forecasting of River Water Flow Rate with Machine Learning. Neural Computing and Applications, 34, 20341-20363.
  • 2. IEA, 2023. International Energy Agency 2023, https://www.iea.org/.
  • 3. Zhang, J., Yan, J., Infield, D., Liu, Y., Lien, F., 2019. Short-term Forecasting and Uncertainty Analysis of Wind Turbine Power Based on Long Short-term Memory Network and Gaussian Mixture Model. Applied Energy, 241, 229-244.
  • 4. Jung, J., Broadwater, R.P., 2014. Current Status and Future Advances for Wind Speed and Power Forecasting. Renewable and Sustainable Energy Reviews, 31, 762-777.
  • 5. Tascikaraoglu, A., Uzunoglu, M., 2014. A Review of Combined Approaches for Prediction of Short-term Wind Speed and Power. Renewable and Sustainable Energy Reviews, 34, 243-254.
  • 6. Liu, H., Tian, H., Li, Y., 2015. An EMD-recursive ARIMA Method to Predict Wind Speed for Railway Strong Wind Warning System, Journal of Wind Engineering and Industrial Aerodynamics, 141, 27-38.
  • 7. Kavasseri, R.G., Seetharaman, K., 2009. Day-Ahead Wind Speed Forecasting Using F-ARIMA Models. Renewable Energy, 34(5), 1388-1393.
  • 8. Khosravi, A., Koury, R.N.N., Machado, L., Pabon, J.J.G., 2018. Prediction of Hourly Solar Radiation in Abu Musa Island Using Machine Learning Algorithms. Journal of Cleaner Production, 176, 63-75.
  • 9. Shi, X., Lei, X., Huang, Q., Huang, S., Ren, K., Hu, Y., 2018. Hourly Day-ahead Wind Power Prediction Using the Hybrid Model of Variational Model Decomposition and Long Short-term Memory. Energies, 11(11).
  • 10. Zhang, Z., Ye, L., Qin, H., Liu, Y., Wang, C., Yu, X., Yin, X., Li, J., 2019. Wind Speed Prediction Method Using Shared Weight Long Short-term Memory Network and Gaussian Process Regression. Applied Energy, 247, 270-284.
  • 11. Ilhan, A., Bilgili, M., Sahin, B., Akilli, H., 2015. Estimation of Aerodynamic Characteristics for a Horizontal Axis Wind Turbine. International Journal of Engineering and Natural Sciences, 9(2), 51-57.
  • 12. Bilgili, M., 2010. Prediction of Soil Temperature Using Regression and Artificial Neural Network Models. Meteorology and Atmospheric Physics, 110(1), 59-70.
  • 13. Graupe, D., 2007. Principles of Artificial Neural Networks. World Scientific Publishing Co. Pte. Ltd., 2nd ed., USA.
  • 14. Bilgili, M., Sahin, B., 2010. Comparative Analysis of Regression and Artificial Neural Network Models for Wind Speed Prediction. Meteorology and Atmospheric Physics, 109(1), 61-72.
  • 15. Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003. Wastewater Engineering: Treatment and Reuse. Metcalf & Eddy, Inc., McGraw-Hill, 4th ed., New York, USA.
  • 16. Ilhan, A., 2023. Energy Recovery Analysis of a Biomass Type of Installed Waste Water Treatment Plant. Cukurova University Journal of the Faculty of Engineering, 38(1), 169-183.

Biokütle Tipi Kurulu Atık Su Arıtma Tesisinin Enerji Geri Kazanım Analizi

Yıl 2024, Cilt: 39 Sayı: 2, 359 - 374, 11.07.2024
https://doi.org/10.21605/cukurovaumfd.1514358

Öz

Bu çalışmada, kurulu bir atık su arıtma tesisinin gaz türbinlerinden elde edilen enerji üretimleri, yapay sinir ağlarından (YSA) yararlanılarak yapay zekâ yöntemi kullanılarak tahmin edilmiştir. Bu doğrultuda, yapay zekâ ilişkilendirme yöntemine dayalı tahminlerde, elektrik üretimi veri kümesinde bulunan ve fiziksel ve kimyasal veri kümelerinde bulunan 445 verinin tamamı kullanılmıştır. Bu toplam 445 verinin her bir anlık verisi, tesisin gaz türbinlerinden elde edilen günlük ortalama elektrik üretimine (P) karşılık gelmekte olup; ayrıca, sıcaklık (T), asitlik derecesi (pH), iletkenlik (σ), ve ilaveten gaz jeneratöründe yakılacak atık gazın günlük toplam hacimsel akışını (Q) da içermektedir. Buna göre, güç üretim parametresi kapsamında, YSA yaklaşımıyla elde edilen en iyi tahminin; %6.1279’luk ortalama mutlak yüzde hata (MAPE) değerine, 2,1540 MWh/gün ortalama karekök hata (RMSE) ve 0,9730 korelasyon katsayısına (R) karşılık gelen istatistiksel doğruluk sonuçlarını ürettiği sonucuna varılmıştır.

Kaynakça

  • 1. Ilhan, A., 2022. Forecasting of River Water Flow Rate with Machine Learning. Neural Computing and Applications, 34, 20341-20363.
  • 2. IEA, 2023. International Energy Agency 2023, https://www.iea.org/.
  • 3. Zhang, J., Yan, J., Infield, D., Liu, Y., Lien, F., 2019. Short-term Forecasting and Uncertainty Analysis of Wind Turbine Power Based on Long Short-term Memory Network and Gaussian Mixture Model. Applied Energy, 241, 229-244.
  • 4. Jung, J., Broadwater, R.P., 2014. Current Status and Future Advances for Wind Speed and Power Forecasting. Renewable and Sustainable Energy Reviews, 31, 762-777.
  • 5. Tascikaraoglu, A., Uzunoglu, M., 2014. A Review of Combined Approaches for Prediction of Short-term Wind Speed and Power. Renewable and Sustainable Energy Reviews, 34, 243-254.
  • 6. Liu, H., Tian, H., Li, Y., 2015. An EMD-recursive ARIMA Method to Predict Wind Speed for Railway Strong Wind Warning System, Journal of Wind Engineering and Industrial Aerodynamics, 141, 27-38.
  • 7. Kavasseri, R.G., Seetharaman, K., 2009. Day-Ahead Wind Speed Forecasting Using F-ARIMA Models. Renewable Energy, 34(5), 1388-1393.
  • 8. Khosravi, A., Koury, R.N.N., Machado, L., Pabon, J.J.G., 2018. Prediction of Hourly Solar Radiation in Abu Musa Island Using Machine Learning Algorithms. Journal of Cleaner Production, 176, 63-75.
  • 9. Shi, X., Lei, X., Huang, Q., Huang, S., Ren, K., Hu, Y., 2018. Hourly Day-ahead Wind Power Prediction Using the Hybrid Model of Variational Model Decomposition and Long Short-term Memory. Energies, 11(11).
  • 10. Zhang, Z., Ye, L., Qin, H., Liu, Y., Wang, C., Yu, X., Yin, X., Li, J., 2019. Wind Speed Prediction Method Using Shared Weight Long Short-term Memory Network and Gaussian Process Regression. Applied Energy, 247, 270-284.
  • 11. Ilhan, A., Bilgili, M., Sahin, B., Akilli, H., 2015. Estimation of Aerodynamic Characteristics for a Horizontal Axis Wind Turbine. International Journal of Engineering and Natural Sciences, 9(2), 51-57.
  • 12. Bilgili, M., 2010. Prediction of Soil Temperature Using Regression and Artificial Neural Network Models. Meteorology and Atmospheric Physics, 110(1), 59-70.
  • 13. Graupe, D., 2007. Principles of Artificial Neural Networks. World Scientific Publishing Co. Pte. Ltd., 2nd ed., USA.
  • 14. Bilgili, M., Sahin, B., 2010. Comparative Analysis of Regression and Artificial Neural Network Models for Wind Speed Prediction. Meteorology and Atmospheric Physics, 109(1), 61-72.
  • 15. Tchobanoglous, G., Burton, F.L., Stensel, H.D., 2003. Wastewater Engineering: Treatment and Reuse. Metcalf & Eddy, Inc., McGraw-Hill, 4th ed., New York, USA.
  • 16. Ilhan, A., 2023. Energy Recovery Analysis of a Biomass Type of Installed Waste Water Treatment Plant. Cukurova University Journal of the Faculty of Engineering, 38(1), 169-183.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapay Zeka (Diğer)
Bölüm Makaleler
Yazarlar

Akın İlhan 0000-0003-3590-5291

Yayımlanma Tarihi 11 Temmuz 2024
Gönderilme Tarihi 12 Ocak 2024
Kabul Tarihi 27 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 2

Kaynak Göster

APA İlhan, A. (2024). Artificial Intelligence Predictions of Biomass Power of an Installed Waste Water Treatment Plant. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(2), 359-374. https://doi.org/10.21605/cukurovaumfd.1514358