Araştırma Makalesi
BibTex RIS Kaynak Göster

Concrete Surface Crack Detection via YOLOv8 Deep Learning Algorithm

Yıl 2024, Cilt: 39 Sayı: 3, 667 - 678, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560104

Öz

Concrete should be monitored throughout its service life, any damages should be detected, and necessary repairs should be promptly carried out. Therefore timely and accurate detection is crucial for the durability of concrete. Cracks are the earliest indicators of damage in reinforced concrete structures. Especially in high seismic risk regions like Turkey, early detection of cracks is of vital importance for the resilience and safety of structures. Manual detection of cracks is generally disadvantaged in terms of time, labor, cost, high error probability, and application difficulties. As an alternative to manual inspection, image processing techniques and algorithms based on machine learning and deep learning are increasingly being utilized in this field. This study aims to detect cracks on concrete surfaces using image processing methods with the METU dataset consisting of images from various buildings on the Middle East Technical University campus. A total of 550 sample images were selected from the dataset, comprising 500 positive and 50 negative images. The dataset was expanded to 1330 examples using various data augmentation techniques. The dataset was divided into 88% training, 8% validation, and 4% test sets. Thus 1170 images were used for training, 105 for validation, and 55 for testing. The training process was conducted in the Google Colab environment using the YOLOv8 model from the YOLO series. According to the results obtained, the model produced very few false positive results in crack predictions and demonstrated high accuracy in distinguishing different classes.

Kaynakça

  • 1. Hamishebahar, Y., Guan, H., So, S., Jo, J., 2022. A comprehensive review of deep learning-based crack detection approaches. Applied Sciences, 12(3), 1374.
  • 2. Valença, J., Puente, I., Júlio, E.N.B.S., González-Jorge, H., Arias-Sánchez, P., 2017. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Construction and Building Materials, 146, 668-678.
  • 3. Gaur, A., Kishore, K., Jain, R., Pandey, A., Singh, P., Wagri, N.K., Roy-Chowdhury, A.B., 2023. A novel approach for industrial concrete defect identification based on image processing and deep convolutional neural networks. Case Studies in Construction Materials, 19, e02392.
  • 4. Rahai, M., Esfandiari, A., Bakhshi, A., 2020. Detection of structural damages by model updating based on singular value decomposition of transfer function subsets. Structural Control and Health Monitoring, 27(11), e2622.
  • 5. Yu, Y., Rashidi, M., Samali, B., Mohammadi, M., Nguyen, T.N., Zhou, X., 2022. Crack detection of concrete structures using deep convolutional neural networks optimized by enhanced chicken swarm algorithm. Structural Health Monitoring, 21(5), 2244-2263.
  • 6. Scott, M., Rezaizadeh, A., Delahaza, A., Santos, C.G., Moore, M., Graybeal, B., Washer, G., 2003. A comparison of nondestructive evaluation methods for bridge deck assessment. NDT & International, 36(4), 245-255.
  • 7. Rimkus, A., Podviezko, A., Gribniak, V., 2015. Processing digital images for crack localization in reinforced concrete members. Procedia Engineering, 122, 239-243.
  • 8. Ali, R., Chuah, J.H., Talip, M.S.A., Mokhtar, N., Shoaib, M.A., 2022. Structural crack detection using deep convolutional neural networks. Automation in Construction, 133, 103989.
  • 9. Miao, P., Srimahachota, T., 2021. Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques. Construction and Building Materials, 293, 123549.
  • 10. Ni, T., Zhou, R., Gu, C., Yang, Y., 2020. Measurement of concrete crack feature with android smartphone app based on digital image processing techniques. Measurement, 150, 107093.
  • 11. Rucka, M., Wojtczak, E., Knak, M., Kurpińska, M., 2021. Characterization of fracture process in polyolefin fibre-reinforced concrete using ultrasonic waves and digital image correlation. Construction and Building Materials, 280, 122522.
  • 12. Sevinç, A., Özyurt, F., 2022. Beton yüzey çatlaklarinin tespitinde derin öğrenme mimarilerin kullanilmasi. International Journal of Innovative Engineering Applications, 6(2), 318-325.
  • 13. Vivekananthan, V., Vignesh, R., Vasanthaseelan, S., Joel, E., Kumar, K.S., 2023. Concrete bridge crack detection by image processing technique by using the improved OTSU method. Materials Today: Proceedings, 74, 1002-1007.
  • 14. Iraniparast, M., Ranjbar, S., Rahai, M., Nejad, F.M., 2023. Surface concrete cracks detection and segmentation using transfer learning and multi-resolution image processing. In Structures, 54, 386-398.
  • 15. Balageas, D., Fritzen, C.P., Güemes, A., 2010. Structural health monitoring. John Wiley & Sons.
  • 16. Neville, A.M., 1997. Properties of concrete. London: Wiley
  • 17. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., Czarnecki, J.J., 2003. A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory, USA, 1, 16.
  • 18. Kabir, S., 2008. Image processing in concrete applications: review and prospective. In 2nd International Structural Specialty Conference on Partnership for Innovation: Instrumentation and Monitoring of Structures, CSCE Annual Conference, Quebec City.
  • 19. Özgenel, Ç.F., 2019. Concrete crack images for classification. Mendeley Data, 2, 2019.
  • 20. https://docs.roboflow.com/annotate/use-roboflow-annotate
  • 21. https://research.google.com/colaboratory
  • 22. https://blog.roboflow.com/whats-new-in-yolov8/
  • 23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779-788.
  • 24. Erickson, B.J., Kitamura, F., 2021. Magician’s corner: 9. performance metrics for machine learning models. Radiology: Artificial Intelligence, 3(3), e200126.
  • 25. Ying, X., 2019. An overview of overfitting and its solutions. In Journal of Physics: Conference Series 1168, 022022. IOP Publishing.
  • 26. Dietterich, T., 1995. Overfitting and undercomputing in machine learning. ACM Computing Surveys (CSUR), 27(3), 326-327
  • 27. Li, H., Li, J., Guan, X., Liang, B., Lai, Y., Luo, X., 2019. Research on overfitting of deep learning. In 2019 15th International Conference on Computational Intelligence and Security (CIS), 78-81, IEEE.
  • 28. Li, S., Zhao, X., 2023. High-resolution concrete damage image synthesis using conditional generative adversarial network. Automation in Construction, 147, 104739.
  • 29. Bukhsh, Z.A., Jansen, N., Saeed, A., 2021. Damage detection using in-domain and cross-domain transfer learning. Neural Computing and Applications, 33(24), 16921-16936.
  • 30. Dhakal, N., Zihan, Z.U., Elseifi, M.A., Mousa, M.R., Gaspard, K., Fillastre, C.N., 2021. Surface identification of top-down, bottom-up, and cement-treated reflective cracks using convolutional neural network and artificial neural networks. Journal of Transportation Engineering, Part B: Pavements, 147(1), 04020080.
  • 31. Kung, R.Y., Pan, N.H., Wang, C.C., Lee, P.C., 2021. Application of deep learning and unmanned aerial vehicle on building maintenance. Advances in Civil Engineering, 2021, 1-12.
  • 32. Yang, H., Ni, J., Gao, J., Han, Z., Luan, T., 2021. A novel method for peanut variety identification and classification by improved VGG16. Scientific Reports, 11(1), 15756.
  • 33. Dorafshan, S., Azari, H., 2020. Evaluation of bridge decks with overlays using impact echo, a deep learning approach. Automation in Construction, 113, 103133.
  • 34. Gong, Y., Luo, J., Shao, H., He, K., Zeng, W., 2020. Automatic defect detection for small metal cylindrical shell using transfer learning and logistic regression. Journal of Nondestructive Evaluation, 39, 1-13.
  • 35. Liang, J., 2020. Image classification based on RESNET. In Journal of Physics: Conference Series, 1634(1), 012110, IOP Publishing.
  • 36. Wang, Z., Xu, G., Ding, Y., Wu, B., Lu, G., 2020. A vision-based active learning convolutional neural network model for concrete surface crack detection. Advances in Structural Engineering, 23(13), 2952-2964.
  • 37. Zhu, J., Zhang, C., Qi, H., Lu, Z., 2020. Vision-based defects detection for bridges using transfer learning and convolutional neural networks. Structure and Infrastructure Engineering, 16(7), 1037-1049.
  • 38. Zhu, J., Song, J., 2020. An intelligent classification model for surface defects on cement concrete bridges. Applied Sciences, 10(3), 972.
  • 39. Dung, C.V., 2019. Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, 99, 52-58.
  • 40. Feng, C., Zhang, H., Wang, S., Li, Y., Wang, H., Yan, F., 2019. Structural damage detection using deep convolutional neural network and transfer learning. KSCE Journal of Civil Engineering, 23, 4493-4502.
  • 41. Hüthwohl, P., Lu, R., Brilakis, I., 2019. Multi-Classifier for reinforced concrete bridge defects. Automation in Construction, 105, 102824.
  • 42. Hung, P.D., Su, N.T., Diep, V.T., 2019. Surface classification of damaged concrete using deep convolutional neural network. Pattern Recognition and Image Analysis, 29(4), 676-687.
  • 43. Słoński, M., 2019. A comparison of deep convolutional neural networks for image-based detection of concrete surface cracks. Computer Assisted Methods in Engineering and Science, 26(2), 105-112.
  • 44. Soni, A.N., 2019. Crack detection in buildings using convolutional neural network. Journal for Innovative Development in Pharmaceutical and Technical Science, 2(6), 54-59.
  • 45. Özgenel, Ç.F., Sorguç, A.G., 2018. Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Isarc. Proceedings of the International Symposium on Automation and Robotics in Construction, 35, 1-8, IAARC Publications.
  • 46. Silva, W.R.L.D., Lucena, D.S.D., 2018. Concrete cracks detection based on deep learning image classification. In Proceedings, 2(8), 489, MDPI.

Beton Yüzey Çatlaklarının YOLOv8 Derin Öğrenme Algoritması ile Tespit Edilmesi

Yıl 2024, Cilt: 39 Sayı: 3, 667 - 678, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560104

Öz

Beton kullanım ömrü boyunca takip edilmeli, varsa hasarlar tespit edilmeli ve gerekli işlemler zamanında yapılmalıdır. Bundan dolayı doğru zamanda doğru tespit betonun dayanıklılığı açısından oldukça önemlidir. Çatlaklar, betonarme yapıların zarar gördüğünün en erken sinyalleridir. Türkiye gibi deprem riski yüksek bölgelerde yapıların dayanıklılığı ve güvenliği açısından çatlakların erken tespiti hayati öneme sahiptir. Çatlakları manuel olarak tespit etmek genellikle zaman, işgücü, maliyet, yüksek hata olasılığı ve uygulamadaki zorluklar açısından oldukça dezavantajlıdır. Manuel tespite alternatif olarak görüntü işleme teknikleri, makine öğrenmesi ve derin öğrenme tabanlı algoritmaların bu alanda kullanımı yaygınlaşmaktadır. Bu çalışmada, Orta Doğu Teknik Üniversitesi kampüsündeki farklı binalardan elde edilen görüntülerden oluşan METU veri kümesi kullanılarak beton yüzeyindeki çatlakların görüntü işleme yöntemi ile tespit edilmesi amaçlanmıştır. Veri kümesinden 550 adet örnek görüntü seçilmiş olup bu görüntülerin 500 adedi pozitif, kalan 50 adedi ise negatif görüntüden oluşmaktadır. Veri seti çeşitli veri artırma teknikleri ile 1330 örneğe genişletilmiştir. Veri seti %88 eğitim, %8 doğrulama, %4 test kümesi olarak bölünmüştür. Sonuç olarak 1170 adet görüntü eğitim, 105 adet görüntü doğrulama ve 55 adet görüntü ise test için kullanılmıştır. Eğitim işlemi Google Colab ortamında gerçekleştirilmiştir. Model olarak YOLO serisinden YOLOv8 modeli kullanılmıştır. Elde edilen sonuçlara göre modelin çatlak tahminlerinde çok az yanlış pozitif sonuç verdiği ve farklı sınıfları ayırt etmede yüksek başarı gösterdiği tespit edilmiştir.

Kaynakça

  • 1. Hamishebahar, Y., Guan, H., So, S., Jo, J., 2022. A comprehensive review of deep learning-based crack detection approaches. Applied Sciences, 12(3), 1374.
  • 2. Valença, J., Puente, I., Júlio, E.N.B.S., González-Jorge, H., Arias-Sánchez, P., 2017. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Construction and Building Materials, 146, 668-678.
  • 3. Gaur, A., Kishore, K., Jain, R., Pandey, A., Singh, P., Wagri, N.K., Roy-Chowdhury, A.B., 2023. A novel approach for industrial concrete defect identification based on image processing and deep convolutional neural networks. Case Studies in Construction Materials, 19, e02392.
  • 4. Rahai, M., Esfandiari, A., Bakhshi, A., 2020. Detection of structural damages by model updating based on singular value decomposition of transfer function subsets. Structural Control and Health Monitoring, 27(11), e2622.
  • 5. Yu, Y., Rashidi, M., Samali, B., Mohammadi, M., Nguyen, T.N., Zhou, X., 2022. Crack detection of concrete structures using deep convolutional neural networks optimized by enhanced chicken swarm algorithm. Structural Health Monitoring, 21(5), 2244-2263.
  • 6. Scott, M., Rezaizadeh, A., Delahaza, A., Santos, C.G., Moore, M., Graybeal, B., Washer, G., 2003. A comparison of nondestructive evaluation methods for bridge deck assessment. NDT & International, 36(4), 245-255.
  • 7. Rimkus, A., Podviezko, A., Gribniak, V., 2015. Processing digital images for crack localization in reinforced concrete members. Procedia Engineering, 122, 239-243.
  • 8. Ali, R., Chuah, J.H., Talip, M.S.A., Mokhtar, N., Shoaib, M.A., 2022. Structural crack detection using deep convolutional neural networks. Automation in Construction, 133, 103989.
  • 9. Miao, P., Srimahachota, T., 2021. Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques. Construction and Building Materials, 293, 123549.
  • 10. Ni, T., Zhou, R., Gu, C., Yang, Y., 2020. Measurement of concrete crack feature with android smartphone app based on digital image processing techniques. Measurement, 150, 107093.
  • 11. Rucka, M., Wojtczak, E., Knak, M., Kurpińska, M., 2021. Characterization of fracture process in polyolefin fibre-reinforced concrete using ultrasonic waves and digital image correlation. Construction and Building Materials, 280, 122522.
  • 12. Sevinç, A., Özyurt, F., 2022. Beton yüzey çatlaklarinin tespitinde derin öğrenme mimarilerin kullanilmasi. International Journal of Innovative Engineering Applications, 6(2), 318-325.
  • 13. Vivekananthan, V., Vignesh, R., Vasanthaseelan, S., Joel, E., Kumar, K.S., 2023. Concrete bridge crack detection by image processing technique by using the improved OTSU method. Materials Today: Proceedings, 74, 1002-1007.
  • 14. Iraniparast, M., Ranjbar, S., Rahai, M., Nejad, F.M., 2023. Surface concrete cracks detection and segmentation using transfer learning and multi-resolution image processing. In Structures, 54, 386-398.
  • 15. Balageas, D., Fritzen, C.P., Güemes, A., 2010. Structural health monitoring. John Wiley & Sons.
  • 16. Neville, A.M., 1997. Properties of concrete. London: Wiley
  • 17. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., Czarnecki, J.J., 2003. A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory, USA, 1, 16.
  • 18. Kabir, S., 2008. Image processing in concrete applications: review and prospective. In 2nd International Structural Specialty Conference on Partnership for Innovation: Instrumentation and Monitoring of Structures, CSCE Annual Conference, Quebec City.
  • 19. Özgenel, Ç.F., 2019. Concrete crack images for classification. Mendeley Data, 2, 2019.
  • 20. https://docs.roboflow.com/annotate/use-roboflow-annotate
  • 21. https://research.google.com/colaboratory
  • 22. https://blog.roboflow.com/whats-new-in-yolov8/
  • 23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779-788.
  • 24. Erickson, B.J., Kitamura, F., 2021. Magician’s corner: 9. performance metrics for machine learning models. Radiology: Artificial Intelligence, 3(3), e200126.
  • 25. Ying, X., 2019. An overview of overfitting and its solutions. In Journal of Physics: Conference Series 1168, 022022. IOP Publishing.
  • 26. Dietterich, T., 1995. Overfitting and undercomputing in machine learning. ACM Computing Surveys (CSUR), 27(3), 326-327
  • 27. Li, H., Li, J., Guan, X., Liang, B., Lai, Y., Luo, X., 2019. Research on overfitting of deep learning. In 2019 15th International Conference on Computational Intelligence and Security (CIS), 78-81, IEEE.
  • 28. Li, S., Zhao, X., 2023. High-resolution concrete damage image synthesis using conditional generative adversarial network. Automation in Construction, 147, 104739.
  • 29. Bukhsh, Z.A., Jansen, N., Saeed, A., 2021. Damage detection using in-domain and cross-domain transfer learning. Neural Computing and Applications, 33(24), 16921-16936.
  • 30. Dhakal, N., Zihan, Z.U., Elseifi, M.A., Mousa, M.R., Gaspard, K., Fillastre, C.N., 2021. Surface identification of top-down, bottom-up, and cement-treated reflective cracks using convolutional neural network and artificial neural networks. Journal of Transportation Engineering, Part B: Pavements, 147(1), 04020080.
  • 31. Kung, R.Y., Pan, N.H., Wang, C.C., Lee, P.C., 2021. Application of deep learning and unmanned aerial vehicle on building maintenance. Advances in Civil Engineering, 2021, 1-12.
  • 32. Yang, H., Ni, J., Gao, J., Han, Z., Luan, T., 2021. A novel method for peanut variety identification and classification by improved VGG16. Scientific Reports, 11(1), 15756.
  • 33. Dorafshan, S., Azari, H., 2020. Evaluation of bridge decks with overlays using impact echo, a deep learning approach. Automation in Construction, 113, 103133.
  • 34. Gong, Y., Luo, J., Shao, H., He, K., Zeng, W., 2020. Automatic defect detection for small metal cylindrical shell using transfer learning and logistic regression. Journal of Nondestructive Evaluation, 39, 1-13.
  • 35. Liang, J., 2020. Image classification based on RESNET. In Journal of Physics: Conference Series, 1634(1), 012110, IOP Publishing.
  • 36. Wang, Z., Xu, G., Ding, Y., Wu, B., Lu, G., 2020. A vision-based active learning convolutional neural network model for concrete surface crack detection. Advances in Structural Engineering, 23(13), 2952-2964.
  • 37. Zhu, J., Zhang, C., Qi, H., Lu, Z., 2020. Vision-based defects detection for bridges using transfer learning and convolutional neural networks. Structure and Infrastructure Engineering, 16(7), 1037-1049.
  • 38. Zhu, J., Song, J., 2020. An intelligent classification model for surface defects on cement concrete bridges. Applied Sciences, 10(3), 972.
  • 39. Dung, C.V., 2019. Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, 99, 52-58.
  • 40. Feng, C., Zhang, H., Wang, S., Li, Y., Wang, H., Yan, F., 2019. Structural damage detection using deep convolutional neural network and transfer learning. KSCE Journal of Civil Engineering, 23, 4493-4502.
  • 41. Hüthwohl, P., Lu, R., Brilakis, I., 2019. Multi-Classifier for reinforced concrete bridge defects. Automation in Construction, 105, 102824.
  • 42. Hung, P.D., Su, N.T., Diep, V.T., 2019. Surface classification of damaged concrete using deep convolutional neural network. Pattern Recognition and Image Analysis, 29(4), 676-687.
  • 43. Słoński, M., 2019. A comparison of deep convolutional neural networks for image-based detection of concrete surface cracks. Computer Assisted Methods in Engineering and Science, 26(2), 105-112.
  • 44. Soni, A.N., 2019. Crack detection in buildings using convolutional neural network. Journal for Innovative Development in Pharmaceutical and Technical Science, 2(6), 54-59.
  • 45. Özgenel, Ç.F., Sorguç, A.G., 2018. Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Isarc. Proceedings of the International Symposium on Automation and Robotics in Construction, 35, 1-8, IAARC Publications.
  • 46. Silva, W.R.L.D., Lucena, D.S.D., 2018. Concrete cracks detection based on deep learning image classification. In Proceedings, 2(8), 489, MDPI.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Muhammet Gökhan Altun Bu kişi benim 0000-0002-9345-9907

Ahmet Hakan Altun 0009-0001-7142-0470

Yayımlanma Tarihi 3 Ekim 2024
Gönderilme Tarihi 23 Temmuz 2024
Kabul Tarihi 27 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Altun, M. G., & Altun, A. H. (2024). Beton Yüzey Çatlaklarının YOLOv8 Derin Öğrenme Algoritması ile Tespit Edilmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 667-678. https://doi.org/10.21605/cukurovaumfd.1560104