Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Investigation of the Impact Performance of Thin-walled Sheet Metal Crash Boxes with Different Cross-section Geometries

Yıl 2024, Cilt: 39 Sayı: 3, 719 - 728, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560152

Öz

This study numerically investigates the impact performance of crash boxes designed from thin-walled sheet metal with different cross-sectional geometries. Initially, crash boxes with five different cross-sectional geometries (square, circle, triangle, pentagon, hexagon) were designed, each having equal cross-sectional area and length. The designed crash boxes were imported into the ANSYS Workbench program to perform impact simulations. The impact analyses were conducted by simulating the collision of a 400 kg mass impacting the crash boxes at a speed of 10 ms-1. As a result of the impact analyses, the maximum force, absorbed energy, and various impact indicators were examined to determine the best cross-sectional geometry. According to the impact analysis results, the highest impact force and absorbed energy were observed in crash boxes with circular cross-sections. On the other hand, the lowest impact force and absorbed energy were observed in crash boxes with triangular cross-sections. In conclusion, it was determined that as the number of edges in the cross-section increases, the energy absorption capability of the structure also increases.

Kaynakça

  • 1. Zhang, H., Zhang, X., 2016. Crashworthiness performance of conical tubes with nonlinear thickness distribution. Thin-Walled Structures, 99, 35-44.
  • 2. Usta, F., Türkmen, H.S., 2019. Experimental and numerical investigation of impact behavior of nested tubes with and without honeycomb filler. Thin-Walled Structures, 106256.
  • 3. Yu, X., Pan, L., Chen, J., Zhang, X., Wei, P., 2019. Experimental and numerical study on the energy absorption abilities of trabecular–honeycomb biomimetic structures inspired by beetle elytra. Journal of Materials Science, 54, 2193-2204.
  • 4. İnce, F., Türkmen, H.S., Mecitoğlu, Z., Uludag, N., Durgun, İ., Altınok, E., Örenel, H., 2011. A numerical and experimental study on the impact behavior of box structures. Procedia Engineering, 10, 1736-1741.
  • 5. Hussain, N.N., Regalla, S.P., Rao, Y.V.D., Dirgantara, T., Gunawan, L., Jusuf, A., 2021. Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material. Proc IMechE Part L: J Materials: Design and Applications, 235(1), 114-130.
  • 6. Yuan, L., Shi, H., Ma, J., Zhong, Y., 2019. Quasi-static impact of origami crash boxes with various profiles. Thin-Walled Structures, 141, 435-446.
  • 7. Kösedağ, E., İşler, D., 2023. Effect of section geometry and material type on energy absorption capabilities of crash boxes. Karaelmas Fen ve Müh. Dergisi, 13(1), 42-51.
  • 8. Kale, B.S., Bhole, K.S., Mandhare, N.A., Patil, S.V., 2023. Finite element analysis and deployment of analytical hierarchical process for design of the structural framework formicro-actuators of vehicle crash box. International Journal on Interactive Design and Manufacturing, 1-11.
  • 9. Davoudi, M., Kim, K., 2022. Energy absorption capability of thin‑walled structures with various cross sections under oblique crash. International Journal of Steel Structures, 22(6), 1786-1797.
  • 10. Albak, E.İ., 2021. Multi–objective crashworthiness optimization of thin-walled multi-cell tubes with different wall lengths. International Journal of Crashworthiness, 26(4), 438-455.
  • 11. Ceyhan, M., Yıldız, B.S., 2023. Investigation of crash performance of multi-cell crash-boxes. Cukurova University Journal of the Faculty of Engineering, 38(3), 613-621.
  • 12. Fang, J., Gao, Y., Sun, G., Qiu, N., Li, Q., 2015. On design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Structures, 95, 115-126.
  • 13. Wang, C.Y., Lu, G., Zhao, W., Wang, Y., 2020. Modeling and multi-objective optimization of a bionic crash box with folding deformation. Structural and Multidisciplinary Optimization, 61, 283-299.
  • 14. Tanlak, N., Sonmez, F.O., 2014. Optimal shape design of thin-walled tubes under high-velocity axial impact loads. Thin-Walled Structures, 84, 302-312.
  • 15. Sun, G., Xu, F., Li, G., Li, Q., 2014. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. International Journal of Impact Engineering, 64, 62-74.
  • 16. Li, F., Sun, G., Huang, X., Rong, J., Li, Q., 2015. Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties. Engineering Structures, 88, 111-124.
  • 17. Reddy, S., Abbasi, M., Fard, M., 2015. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection. Thin-Walled Structures, 94, 56-66.
  • 18. Tanlak, N., Sonmez, F.O., 2014. Optimal shape design of thin-walled tubes under high-velocity axial impact loads. Thin-Walled Structures, 84, 302-312.

Farklı Kesit Geometrilerine Sahip İnce Duvarlı Sac Metal Çarpışma Kutularının Darbe Performanslarının Nümerik İncelenmesi

Yıl 2024, Cilt: 39 Sayı: 3, 719 - 728, 03.10.2024
https://doi.org/10.21605/cukurovaumfd.1560152

Öz

Bu çalışmada, farklı kesit geometrilerine sahip ince duvarlı sac metalden tasarlanan çarpışma kutularının darbe performansları nümerik olarak incelenmiştir. Öncelikle eşit kesit alanı ve boya sahip beş farklı kesit geometrisinde (kare, daire, üçgen, beşgen, altıgen) çarpışma kutuları tasarlanmıştır. Tasarlanan çarpışma kutuları, darbe simülasyonlarının gerçekleştirilebilmesi için ANSYS Workbench programına aktarılmıştır. Darbe analizleri 400 kg’lık bir kütlenin 10 m/s hızla çarpışma kutularına çarptırılmasıyla gerçekleştirilmiştir. Darbe analizleri sonucunda çarpışma kutularında meydana gelen maksimum kuvvet, sönümlenen enerji miktarı ve farklı darbe indikatörleri incelenerek en iyi kesit geometrisi belirlenmiştir. Darbe analiz sonuçlarına göre en yüksek darbe kuvveti ve sönümlenen enerji miktarı daire kesite sahip çarpışma kutularında elde edilmiştir. Diğer taraftan en düşük darbe kuvveti ve sönümlenen enerji miktarı üçgen kesite sahip çarpışma kutularında görülmüştür. Sonuç olarak kesitteki kenar sayısı artışı ile birlikte yapının enerji sönümleme kabiliyetinin de arttığı tespit edilmiştir.

Kaynakça

  • 1. Zhang, H., Zhang, X., 2016. Crashworthiness performance of conical tubes with nonlinear thickness distribution. Thin-Walled Structures, 99, 35-44.
  • 2. Usta, F., Türkmen, H.S., 2019. Experimental and numerical investigation of impact behavior of nested tubes with and without honeycomb filler. Thin-Walled Structures, 106256.
  • 3. Yu, X., Pan, L., Chen, J., Zhang, X., Wei, P., 2019. Experimental and numerical study on the energy absorption abilities of trabecular–honeycomb biomimetic structures inspired by beetle elytra. Journal of Materials Science, 54, 2193-2204.
  • 4. İnce, F., Türkmen, H.S., Mecitoğlu, Z., Uludag, N., Durgun, İ., Altınok, E., Örenel, H., 2011. A numerical and experimental study on the impact behavior of box structures. Procedia Engineering, 10, 1736-1741.
  • 5. Hussain, N.N., Regalla, S.P., Rao, Y.V.D., Dirgantara, T., Gunawan, L., Jusuf, A., 2021. Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material. Proc IMechE Part L: J Materials: Design and Applications, 235(1), 114-130.
  • 6. Yuan, L., Shi, H., Ma, J., Zhong, Y., 2019. Quasi-static impact of origami crash boxes with various profiles. Thin-Walled Structures, 141, 435-446.
  • 7. Kösedağ, E., İşler, D., 2023. Effect of section geometry and material type on energy absorption capabilities of crash boxes. Karaelmas Fen ve Müh. Dergisi, 13(1), 42-51.
  • 8. Kale, B.S., Bhole, K.S., Mandhare, N.A., Patil, S.V., 2023. Finite element analysis and deployment of analytical hierarchical process for design of the structural framework formicro-actuators of vehicle crash box. International Journal on Interactive Design and Manufacturing, 1-11.
  • 9. Davoudi, M., Kim, K., 2022. Energy absorption capability of thin‑walled structures with various cross sections under oblique crash. International Journal of Steel Structures, 22(6), 1786-1797.
  • 10. Albak, E.İ., 2021. Multi–objective crashworthiness optimization of thin-walled multi-cell tubes with different wall lengths. International Journal of Crashworthiness, 26(4), 438-455.
  • 11. Ceyhan, M., Yıldız, B.S., 2023. Investigation of crash performance of multi-cell crash-boxes. Cukurova University Journal of the Faculty of Engineering, 38(3), 613-621.
  • 12. Fang, J., Gao, Y., Sun, G., Qiu, N., Li, Q., 2015. On design of multi-cell tubes under axial and oblique impact loads. Thin-Walled Structures, 95, 115-126.
  • 13. Wang, C.Y., Lu, G., Zhao, W., Wang, Y., 2020. Modeling and multi-objective optimization of a bionic crash box with folding deformation. Structural and Multidisciplinary Optimization, 61, 283-299.
  • 14. Tanlak, N., Sonmez, F.O., 2014. Optimal shape design of thin-walled tubes under high-velocity axial impact loads. Thin-Walled Structures, 84, 302-312.
  • 15. Sun, G., Xu, F., Li, G., Li, Q., 2014. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. International Journal of Impact Engineering, 64, 62-74.
  • 16. Li, F., Sun, G., Huang, X., Rong, J., Li, Q., 2015. Multiobjective robust optimization for crashworthiness design of foam filled thin-walled structures with random and interval uncertainties. Engineering Structures, 88, 111-124.
  • 17. Reddy, S., Abbasi, M., Fard, M., 2015. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection. Thin-Walled Structures, 94, 56-66.
  • 18. Tanlak, N., Sonmez, F.O., 2014. Optimal shape design of thin-walled tubes under high-velocity axial impact loads. Thin-Walled Structures, 84, 302-312.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Tasarımı ve Makine Elemanları
Bölüm Makaleler
Yazarlar

Oğuz Doğan 0000-0003-4203-8237

Muhammed Safa Kamer 0000-0003-3852-1031

Yayımlanma Tarihi 3 Ekim 2024
Gönderilme Tarihi 29 Haziran 2024
Kabul Tarihi 27 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Doğan, O., & Kamer, M. S. (2024). Farklı Kesit Geometrilerine Sahip İnce Duvarlı Sac Metal Çarpışma Kutularının Darbe Performanslarının Nümerik İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 719-728. https://doi.org/10.21605/cukurovaumfd.1560152