Araştırma Makalesi
BibTex RIS Kaynak Göster

Düşey Bir Plaka Üzerinde Olan Akışa Bileşik Isı Transferinin Etkisi ve Yapay Sinir Ağları Uygulaması

Yıl 2024, Cilt: 39 Sayı: 4, 907 - 922, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1605967

Öz

Isı iletim özellikleri, hem sıvı hem de katı arasında ısı transferinin gerektiği mühendislik uygulamalarının simülasyonu için akış alanında önemlidir. Birleşik Isı Transferi (CHT), duvar içinde iletim ve sıvı içinde taşınım içeren termal problemleri ifade eder. CHT, ısı değiştiricileri, gaz türbini kanatları, nükleer reaktör soğutma boruları, uçak motorları ve uzay araçları için büyük öneme sahiptir. Ayrıca, manyetik alanın etkisi elektrostatik çökeltme, MHD güç jeneratörleri ve pompaları, aeroısıtma ve polimer bilimi gibi alanlarda önemlidir. Bu çalışmanın amacı, birleşik ısı transferi (CHT), karışık taşınım, manyetik alan ve viskoz yayılmanın, düşey bir plaka üzerindeki hız, sıcaklık profilleri, yerel yüzey sürtünmesi ve ısı transferi parametreleri üzerindeki etkilerini anlamaktır. Sınır tabakası denklemleri, Navier-Stokes ve enerji denklemlerinden benzerlik yöntemleri kullanılarak elde edilmiş ve Keller Box tekniği ile sayısal olarak çözülmüştür. Yerel yüzey sürtünmesi ve ısı transferi parametreleri için yeni bir korelasyon geliştirilmiştir. Ayrıca, istenen sayısal değerleri tahmin etmek için Yapay Sinir Ağı (YSA) uygulanmıştır. Yerel ısı transferi için en uygun YSA modeli, bir gizli katman ve dokuz nörona sahip olup, R² değeri 0.9077607 ve MSE değeri 0.0003101 olarak elde edilmiştir. Yerel yüzey sürtünmesi için en iyi model ise bir gizli katman ve on beş nöron ile R² değeri 0.9470261 ve MSE değeri 0.0250369 olarak belirlenmiştir.

Kaynakça

  • 1. Baytas, A.C., 2006. Transport in porous media. ITU Journal Science, 4(1), 3-13.
  • 2. Miyamoto, M., Sumikawa, J., Akiyohi, T., Nakamura, T., 1980. Effects of axial heat conduction in a vertical flat plate on free convection heat transfer. Int. J. Heat Mass Transf., 23, 1545-1553.
  • 3. Char, M.I., Chen, C.K., Cleaver, J.W., 1990. Conjugate forced convection heat transfer from a continuous, moving flat sheet. Int. J. Heat Fluid Fl., 11, 257-261.
  • 4. Chang, C.L., 2008. Numerical simulation for natural convection of micropolar fluids flow along slender hollow circular cylinder with wall conduction effect. Communications in Nonlinear Science and Numerical Simulation, 13(3), 624-636.
  • 5. Mamun, A.A., Chowdhury, Z.R., Azim, M.A., Maleque, M.A., 2008. Conjugate heat transfer for a vertical flat plate with heat generation effect. Nonlinear Analysis: Modelling and Control, 13(2), 213-223.
  • 6. Afify, A.A., 2007. Effects of temperature-dependent viscosity with soret and dufournumbers on non-darcymhd free convective heat and mass transfer pasta vertical surface embedded in a porous medium. Transport in Porous Media, 66(3), 391-401.
  • 7. Das, K., 2012. Impact of thermal radiation on mhd slipflow over a flat plate withvariable fluid properties. Heat and Mass Transfer, 48(5), 767-778.
  • 8. Mamun, A.A., Chowdhury, Z.R., Azim, M.A., Molla, M.M., 2008. MHD-conjugate heat transfer analysis for a vertical flat plate in presence of viscous dissipation and heat generation. International Communications in Heat and Mass Transfer, 35(10), 1275-1280.
  • 9. Chamkha, A.J., Ben-Nakhi, A., 2008. Mhd mixedconvection-radiation interactionalong a permeable surface immersed in a porous medium in the presence ofsoret and dufour’s effects. Heat and Mass Transfer, 44(7), 845.
  • 10. Oztemel, E., 2020. Yapay sinir ağları. Papatya Yayıncılık, İstanbul, 232.
  • 11. Abad, J., Mohebbi, N., Alizadeh, R., Fattahi, A., Doranehgard, M.H., Alhajri, E., Karimi, N., 2020. Analysis of transport processes in a reacting flow of hybrid nanofluid around a bluff-bodyembedded in porous media using artificial neural network and particle swarm optimization. Journal of Molecular Liquids, 313.
  • 12. Kamble, L.V., Pangavhane, D.R., Singh, T.P., 2014. Heat transfer studies using artificial neural network-a review. International Energy Journal, 14(1), 25-42.
  • 13. Chamkha, A.J., Issa, C., Khanafer, K., 2002. Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. International Journal of Thermal Sciences, 41(1), 73-81.
  • 14. Lauriat, G., Ghafir, R., 2000. Forced convective heat transfer in porous media. Handbook of Porous Media, New York, 201-204.
  • 15. Kaya, A., Aydın, O., 2009. The effect of radiation on forced convection flow around a wedge. Turkish Soc Thermal Sciences Technology, 29(1), 1-6.
  • 16. Kaya, A., Aydin, O., 2014. Effects of buoyancy and conjugate heat transfer flowover on a vertical plate embedded in a porous media. Journal of Thermal Scienceand Technology, 34(1), 35-41.
  • 17. Cebeci, T., 2002. Convective heat transfer. Springer, 357.
  • 18. Lloyd, J.R., Sparrow, M., 1970. Combined force and free convection flow on vertical surfaces. Int. J. Heat Mass Tran., 13, 434-438.
  • 19. Chang, C.L., 2006. Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and buoyancy effects, J. Phys. D: Appl. Phys., 39, 1132-1140.
  • 20. El-Kabeir, S.M.M., El-Hakiem, M.A., Rashad, A.M., 2008. Group method analysis of combined heat and mass transfer by MHD non-Darcy non-Newtonian natural convection adjacent to horizontal cylinder in a saturated porous medium. Applied Mathematical Modelling, 32(11), 2378-2395.
  • 21. Aydın, O., Kaya, A., 2008. Non-Darcian forced convection flow of viscous dissipating fluid over a flat plate embedded in a porous medium. Transport in Porous Media, 73(2), 173-186.
  • 22. Kilic, S., 2013. Linear regression analysis. Journal of Mood Disorders, 3(2), 90-92.

The Impact of Conjugate Heat Transfer in Flow Over a Vertical Plate and Application of Artificial Neural Network

Yıl 2024, Cilt: 39 Sayı: 4, 907 - 922, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1605967

Öz

Heat conduction properties are important in the flow area for the simulation of engineering applications where heat transfer is needed between both liquid and solid. Conjugate Heat Transfer (CHT) refers to thermal problems involving both conduction within the wall and convection within the fluid. CHT is crucial for heat exchangers, gas turbine blades, nuclear reactor cooling pipes, aircraft engines, and spacecraft. Additionally, the influence of the magnetic field is significant in fields such as electrostatic precipitation, MHD power generators and pumps, aeroheating, and polymer science. The motivation for this study is to understand the combined effects of CHT, mixed convection, magnetic fields, and viscous dissipation on velocity, temperature profiles, local skin friction, and heat transfer parameters over a vertical plate. The boundary layer equations have been derived from the Navier-Stokes and energy equations using similarity methods and solved numerically with the Keller Box technique. A new correlation for local skin friction and heat transfer parameters has been developed. Moreover, Artificial Neural Network (ANN) models have been applied to forecast desired numerical values. The optimal ANN model for local heat transfer has one hidden layer and nine neurons, achieving an R² value of 0.9077607 and an MSE of 0.0003101. For local skin friction, the best-performing model has one hidden layer and fifteen neurons, with an R² value of 0.9470261 and an MSE of 0.0250369.

Kaynakça

  • 1. Baytas, A.C., 2006. Transport in porous media. ITU Journal Science, 4(1), 3-13.
  • 2. Miyamoto, M., Sumikawa, J., Akiyohi, T., Nakamura, T., 1980. Effects of axial heat conduction in a vertical flat plate on free convection heat transfer. Int. J. Heat Mass Transf., 23, 1545-1553.
  • 3. Char, M.I., Chen, C.K., Cleaver, J.W., 1990. Conjugate forced convection heat transfer from a continuous, moving flat sheet. Int. J. Heat Fluid Fl., 11, 257-261.
  • 4. Chang, C.L., 2008. Numerical simulation for natural convection of micropolar fluids flow along slender hollow circular cylinder with wall conduction effect. Communications in Nonlinear Science and Numerical Simulation, 13(3), 624-636.
  • 5. Mamun, A.A., Chowdhury, Z.R., Azim, M.A., Maleque, M.A., 2008. Conjugate heat transfer for a vertical flat plate with heat generation effect. Nonlinear Analysis: Modelling and Control, 13(2), 213-223.
  • 6. Afify, A.A., 2007. Effects of temperature-dependent viscosity with soret and dufournumbers on non-darcymhd free convective heat and mass transfer pasta vertical surface embedded in a porous medium. Transport in Porous Media, 66(3), 391-401.
  • 7. Das, K., 2012. Impact of thermal radiation on mhd slipflow over a flat plate withvariable fluid properties. Heat and Mass Transfer, 48(5), 767-778.
  • 8. Mamun, A.A., Chowdhury, Z.R., Azim, M.A., Molla, M.M., 2008. MHD-conjugate heat transfer analysis for a vertical flat plate in presence of viscous dissipation and heat generation. International Communications in Heat and Mass Transfer, 35(10), 1275-1280.
  • 9. Chamkha, A.J., Ben-Nakhi, A., 2008. Mhd mixedconvection-radiation interactionalong a permeable surface immersed in a porous medium in the presence ofsoret and dufour’s effects. Heat and Mass Transfer, 44(7), 845.
  • 10. Oztemel, E., 2020. Yapay sinir ağları. Papatya Yayıncılık, İstanbul, 232.
  • 11. Abad, J., Mohebbi, N., Alizadeh, R., Fattahi, A., Doranehgard, M.H., Alhajri, E., Karimi, N., 2020. Analysis of transport processes in a reacting flow of hybrid nanofluid around a bluff-bodyembedded in porous media using artificial neural network and particle swarm optimization. Journal of Molecular Liquids, 313.
  • 12. Kamble, L.V., Pangavhane, D.R., Singh, T.P., 2014. Heat transfer studies using artificial neural network-a review. International Energy Journal, 14(1), 25-42.
  • 13. Chamkha, A.J., Issa, C., Khanafer, K., 2002. Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. International Journal of Thermal Sciences, 41(1), 73-81.
  • 14. Lauriat, G., Ghafir, R., 2000. Forced convective heat transfer in porous media. Handbook of Porous Media, New York, 201-204.
  • 15. Kaya, A., Aydın, O., 2009. The effect of radiation on forced convection flow around a wedge. Turkish Soc Thermal Sciences Technology, 29(1), 1-6.
  • 16. Kaya, A., Aydin, O., 2014. Effects of buoyancy and conjugate heat transfer flowover on a vertical plate embedded in a porous media. Journal of Thermal Scienceand Technology, 34(1), 35-41.
  • 17. Cebeci, T., 2002. Convective heat transfer. Springer, 357.
  • 18. Lloyd, J.R., Sparrow, M., 1970. Combined force and free convection flow on vertical surfaces. Int. J. Heat Mass Tran., 13, 434-438.
  • 19. Chang, C.L., 2006. Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and buoyancy effects, J. Phys. D: Appl. Phys., 39, 1132-1140.
  • 20. El-Kabeir, S.M.M., El-Hakiem, M.A., Rashad, A.M., 2008. Group method analysis of combined heat and mass transfer by MHD non-Darcy non-Newtonian natural convection adjacent to horizontal cylinder in a saturated porous medium. Applied Mathematical Modelling, 32(11), 2378-2395.
  • 21. Aydın, O., Kaya, A., 2008. Non-Darcian forced convection flow of viscous dissipating fluid over a flat plate embedded in a porous medium. Transport in Porous Media, 73(2), 173-186.
  • 22. Kilic, S., 2013. Linear regression analysis. Journal of Mood Disorders, 3(2), 90-92.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Sayısal Yöntemler, Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Pınar Yağlıca 0000-0001-5736-4911

Özdeş Çermik 0000-0001-9308-4589

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 8 Temmuz 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Yağlıca, P., & Çermik, Ö. (2024). The Impact of Conjugate Heat Transfer in Flow Over a Vertical Plate and Application of Artificial Neural Network. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 907-922. https://doi.org/10.21605/cukurovaumfd.1605967