Araştırma Makalesi
BibTex RIS Kaynak Göster

İndigo/Kükürt Boyaları İçeren Atık Sulardan Geri Dönüştürülen Boyar Maddelerin Araştırılması

Yıl 2024, Cilt: 39 Sayı: 4, 969 - 978, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606078

Öz

Türkiye denim kumaş üretiminde Dünya’nın önemli merkezlerinden biridir. Çözgü ipliği genellikle emdirme yöntem ile indigo ve/veya kükürt boyarmaddeler kullanılarak boyanmaktadır. Bu iki boyar maddenin ortak özelliği, suda çözünmemesi ve indirgenme reaksiyonu ile geçici çözünür özellikte boyama yapmasıdır. Atık sularda bulunan boyar maddelerin geri kazanımı hedeflenmiştir. İskur Denim’den alınan indigo ve kükürt boyarmaddeleri içeren atık sular, kimyasal flokülasyon tekniği kullanılarak çökertilmiş ve kurutma sonrası katı madde elde edilmiştir. Çöktürme işlemin ortamın pH’sı, karıştırma hızı ve çöktürme kimyasallarının konsantrasyonu etkin olmuştur. En iyi çökelme; pH 8-8.5 aralığında atık su numunesine AKKİM’den temin edilen floklaştırıcıların eklenmesiyle sağlanmıştır. Geliştirilen bağlayıcı ajanla birlikte, elde edilen çamur kondenzasyon reaksiyonuna tabi tutulmuştur. Atıkt sudan elde edilen indigo ve sülfür boyalardan en yüksek dolu moleküler yörüngenin ve en düşük boş moleküler yörüngenin enerji seviyeleri sırasıyla -4,78 eV ve -4,04 eV olarak dönüşümlü voltametri ile belirlenmiştir. Bu değerler orijinal boyar maddelere oldukça yakın değerler olup, boyama performansı için umut vermektedir.

Kaynakça

  • 1. Hussain T., Wahab A., 2018. A critical review of the current water conservation practices in textile wet processing. J. Clean. Prod., 198, 806-819.
  • 2. Hole G., Hole A.S., 2020. Improving recycling of textiles based on lessons from policies for other recyclable materials: A minireview. Sustain. Prod. Consum., 23, 42-51.
  • 3. Kumar P., Pavithra K.G., 2019. Water and textiles, in: S. Muthu, water in textiles and apparel: Consumption, footprint, and life cycle assessment. Woodhead Publishing Ltd., 21-40.
  • 4. Arnal, J.M., Leon, M.C., Lora, J., Gozalvez, J.M., Santafe, A., Sanz, D., Tena, J., 2008. Ultrafiltration as a pre-treatment of other membrane technologies in the reuse of textile wastewaters. Desalination, 221, 405-412.
  • 5. Ciardelli G., Corsi L., Marcucci M., 2000. Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 31, 189-197.
  • 6. Huber, P., Ossard, S., Fabry, B., Bermond, C., Craperi, D., Fourest, E., 2014. Conditions for cost efficient reuse of biological sludge for paper and board manufacturing. J. Clean. Prod., 66, 65-74.
  • 7. Kim, T.-H., Park, C., Kim, S., 2005. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. J. Clean. Prod., 13, 779-786.
  • 8. Li, C.-H., He, J.-X., 2013. Advanced treatment of spent acid dye bath and reuse of water, salt and surfactant therein. J. Clean. Prod., 59, 86-92.
  • 9. Meksi, N., Ben Ticha, M., Kechida, M., Mhenni, M.F., 2012. Use of eco-friendly hydroxy carbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. J. Clean. Prod., 24, 149-158.
  • 10. Othman, M.R., Hassan, M.A., Shirai, Y., Baharuddin, A.S., Ali, A.A.M., Idris, J., 2014. Treatment of effluents from palm oil mill process to achieve river water quality for reuse as recycled water in a zero-emission system. J. Clean. Prod., 67, 58-61.
  • 11. Porter, J.J., 1990. Membrane filtration techniques used for recovery of dyes, chemicals and energy. Am. Dyest. Rep., 22, 21-26.
  • 12. Qu, F., Liang, H., Zhou, J., Nan, J., Shao, S., Zhang, J., Li, G., 2014. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from micro-cystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J. Memb. Sci., 449, 58-66.
  • 13. Riera-Torres, M., Gutierrez-Bouzan, C., Crespi, M., 2010. Combination of coagulation flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252, 53-59.
  • 14. Robinson, T., McMullan, G., Marchant, R., Nigam, P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77, 247-255.
  • 15. Vedrenne, M., Vasquez-Medrano, R., Prato-Garcia, D., Frontana-Uribe, B., Hernandez-Esparza, M., Andres, J.M., 2012. A ferrous oxalate mediated photo-fenton system: toward an increased biodegradability of indigo dyed waste-waters. J. Hazard. Mater., 243, 292-301.
  • 16. Vuorelma, A., John, P., Keskitalo, M., Kulandainathan, M.A., Marken, F., 2008. Electrochemical and sonoelectrochemical monitoring of indigo reduction by glucose. Dyes and Pigment, 76, 542-549.
  • 17. Zhang, S., Wang, R., Zhang, S., Li, G., Zhang, Y., 2014. Treatment of wastewater containing oil using phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride composite membrane. Desalination, 332, 109- 116.
  • 18. Sala, M., Gutierrez-Bouzan, M.C., 2012. Electrochemical techniques in textile processes and wastewater treatment. Int. J. Photoenergy, 1-12.
  • 19. Sahinkaya, E., Uzal, N., Yetis, U., Dilek, F.B., 2008. Biological treatment and nano-filtration of denim textile wastewater for reuse. J. Hazard. Mater., 153, 1142-1148.
  • 20. Willet J., Wetser K., Vreeburg J., Rijnaarts H., 2019. Review of methods to assess sustainability of industrial water use. Water Resour. Ind., 21, 100110.
  • 21. Chanayath, N., Lhieochaiphant, S., Phutrakul, S., 2002. Pigment extraction techniques from the leaves of Indigofera tinctoria Linn. and Baphicacanthus cusia Brem. and chemical structure analysis of their major components. Chiang Mai University Journal, 1(2), 149-160.
  • 22. Garcia-Macias, P., John, P., 2004. Formation of natural indigo derived from woad (Isatis Tinctoria L.) in relation to product purity. Journal of Agricultural and Food Chemistry, 52, 7891-7896.
  • 23. Gilbert, G.K., Cooke, T.D., 2001. Dyes from plants: past usage, present understanding and potential. Plant Growth Regulation, 34, 57-69.
  • 24. Kongkachuichay, P., Shitangkoon, A., Hirunkitmonkon, S., 2010. Thermodynamics study of natural indigo adsorption on silk yarn. Chiang Mai Journal of Science, 37(2), 363-367.
  • 25. Laitonjam, W.S., Wangkheirakpam, S.D., 2011. Comparative study of the major components of the indigo dye obtained from Strobilanthes flaccidifolius Nees. and Indigofera tinctoria Linn. International Journal of Plant Physiology and Biochemistry, 3(7), 108-116.

Investigation of Dyestuff Recycled from Wastewater Containing Indigo/Sulfur Dyes

Yıl 2024, Cilt: 39 Sayı: 4, 969 - 978, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606078

Öz

Turkey is one of the important centers of denim fabric production in the world. Warp yarn is usually dyed using indigo and/or sulfur dyes according to the impregnation method. The common feature of these two dyes is that they are insoluble in water and dye temporarily with a reduction reaction. The recovery of dyes in wastewater is targeted. Wastewater containing indigo and sulfur dyes taken from İskur Denim was sedimented using the chemical flocculation technique and solid material was obtained after drying. The sedimentation process was affected by the pH of the environment, the mixing speed and the concentration of sedimentation chemicals. The best sedimentation was achieved by adding flocculators supplied by AKKİM to the wastewater sample in the pH range of 8-8.5. The obtained sludge was subjected to condensation reaction with the developed binding agent. The energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the dyes obtained from indigo and sulfur wastewater were determined as -4.78 eV and -4.04 eV, respectively, by cyclic voltammetry. These values are very close to the original dyes and give hope for dyeing performance.

Kaynakça

  • 1. Hussain T., Wahab A., 2018. A critical review of the current water conservation practices in textile wet processing. J. Clean. Prod., 198, 806-819.
  • 2. Hole G., Hole A.S., 2020. Improving recycling of textiles based on lessons from policies for other recyclable materials: A minireview. Sustain. Prod. Consum., 23, 42-51.
  • 3. Kumar P., Pavithra K.G., 2019. Water and textiles, in: S. Muthu, water in textiles and apparel: Consumption, footprint, and life cycle assessment. Woodhead Publishing Ltd., 21-40.
  • 4. Arnal, J.M., Leon, M.C., Lora, J., Gozalvez, J.M., Santafe, A., Sanz, D., Tena, J., 2008. Ultrafiltration as a pre-treatment of other membrane technologies in the reuse of textile wastewaters. Desalination, 221, 405-412.
  • 5. Ciardelli G., Corsi L., Marcucci M., 2000. Membrane separation for wastewater reuse in the textile industry. Resources, Conservation and Recycling, 31, 189-197.
  • 6. Huber, P., Ossard, S., Fabry, B., Bermond, C., Craperi, D., Fourest, E., 2014. Conditions for cost efficient reuse of biological sludge for paper and board manufacturing. J. Clean. Prod., 66, 65-74.
  • 7. Kim, T.-H., Park, C., Kim, S., 2005. Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. J. Clean. Prod., 13, 779-786.
  • 8. Li, C.-H., He, J.-X., 2013. Advanced treatment of spent acid dye bath and reuse of water, salt and surfactant therein. J. Clean. Prod., 59, 86-92.
  • 9. Meksi, N., Ben Ticha, M., Kechida, M., Mhenni, M.F., 2012. Use of eco-friendly hydroxy carbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. J. Clean. Prod., 24, 149-158.
  • 10. Othman, M.R., Hassan, M.A., Shirai, Y., Baharuddin, A.S., Ali, A.A.M., Idris, J., 2014. Treatment of effluents from palm oil mill process to achieve river water quality for reuse as recycled water in a zero-emission system. J. Clean. Prod., 67, 58-61.
  • 11. Porter, J.J., 1990. Membrane filtration techniques used for recovery of dyes, chemicals and energy. Am. Dyest. Rep., 22, 21-26.
  • 12. Qu, F., Liang, H., Zhou, J., Nan, J., Shao, S., Zhang, J., Li, G., 2014. Ultrafiltration membrane fouling caused by extracellular organic matter (EOM) from micro-cystis aeruginosa: Effects of membrane pore size and surface hydrophobicity. J. Memb. Sci., 449, 58-66.
  • 13. Riera-Torres, M., Gutierrez-Bouzan, C., Crespi, M., 2010. Combination of coagulation flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252, 53-59.
  • 14. Robinson, T., McMullan, G., Marchant, R., Nigam, P., 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77, 247-255.
  • 15. Vedrenne, M., Vasquez-Medrano, R., Prato-Garcia, D., Frontana-Uribe, B., Hernandez-Esparza, M., Andres, J.M., 2012. A ferrous oxalate mediated photo-fenton system: toward an increased biodegradability of indigo dyed waste-waters. J. Hazard. Mater., 243, 292-301.
  • 16. Vuorelma, A., John, P., Keskitalo, M., Kulandainathan, M.A., Marken, F., 2008. Electrochemical and sonoelectrochemical monitoring of indigo reduction by glucose. Dyes and Pigment, 76, 542-549.
  • 17. Zhang, S., Wang, R., Zhang, S., Li, G., Zhang, Y., 2014. Treatment of wastewater containing oil using phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride composite membrane. Desalination, 332, 109- 116.
  • 18. Sala, M., Gutierrez-Bouzan, M.C., 2012. Electrochemical techniques in textile processes and wastewater treatment. Int. J. Photoenergy, 1-12.
  • 19. Sahinkaya, E., Uzal, N., Yetis, U., Dilek, F.B., 2008. Biological treatment and nano-filtration of denim textile wastewater for reuse. J. Hazard. Mater., 153, 1142-1148.
  • 20. Willet J., Wetser K., Vreeburg J., Rijnaarts H., 2019. Review of methods to assess sustainability of industrial water use. Water Resour. Ind., 21, 100110.
  • 21. Chanayath, N., Lhieochaiphant, S., Phutrakul, S., 2002. Pigment extraction techniques from the leaves of Indigofera tinctoria Linn. and Baphicacanthus cusia Brem. and chemical structure analysis of their major components. Chiang Mai University Journal, 1(2), 149-160.
  • 22. Garcia-Macias, P., John, P., 2004. Formation of natural indigo derived from woad (Isatis Tinctoria L.) in relation to product purity. Journal of Agricultural and Food Chemistry, 52, 7891-7896.
  • 23. Gilbert, G.K., Cooke, T.D., 2001. Dyes from plants: past usage, present understanding and potential. Plant Growth Regulation, 34, 57-69.
  • 24. Kongkachuichay, P., Shitangkoon, A., Hirunkitmonkon, S., 2010. Thermodynamics study of natural indigo adsorption on silk yarn. Chiang Mai Journal of Science, 37(2), 363-367.
  • 25. Laitonjam, W.S., Wangkheirakpam, S.D., 2011. Comparative study of the major components of the indigo dye obtained from Strobilanthes flaccidifolius Nees. and Indigofera tinctoria Linn. International Journal of Plant Physiology and Biochemistry, 3(7), 108-116.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevresel ve Sürdürülebilir Süreçler
Bölüm Makaleler
Yazarlar

Aslı Uluçay Bu kişi benim 0009-0005-9402-1359

Gökhan Ceyhan 0000-0002-9127-2348

Onur Balcı Bu kişi benim 0000-0001-6885-7391

Ceren Işık Bu kişi benim 0009-0007-9647-1913

Sıddık Yavuz Bu kişi benim 0000-0003-1585-8336

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 6 Kasım 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Uluçay, A., Ceyhan, G., Balcı, O., Işık, C., vd. (2024). Investigation of Dyestuff Recycled from Wastewater Containing Indigo/Sulfur Dyes. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 969-978. https://doi.org/10.21605/cukurovaumfd.1606078