Araştırma Makalesi
BibTex RIS Kaynak Göster

Üç Farklı Metasezgisel Algoritma Kullanılarak Petek Kirişlerin Yer Değiştirme Optimizasyonu

Yıl 2024, Cilt: 39 Sayı: 4, 979 - 990, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606085

Öz

Petek kirişlerin kullanımı, çok yönlü mimari özellikleri nedeniyle son dönemde büyük ilgi görmektedir. Bu özellikler, farklı şekillerde boşluk içeren belirgin geometrik formları kapsamaktadır. Petek kirişler, artan eğilme mukavemeti sağlayarak hem ekonomik hem de çevresel açıdan faydalıdır; ayrıca, ağırlık artışı olmaksızın üretim teknikleri sayesinde kesit direncini artırmaktadır. Bu kirişler hastaneler, depolar, otoparklar, okullar ve alışveriş merkezleri gibi çeşitli yapılarda kullanılmaktadır. Bu çalışmada, altıgen boşluklu petek kirişlerin performansı S235, S255 ve S355 olmak üzere üç farklı malzeme kullanılarak optimize edilmiştir. Optimum kesit boyutları, düşey yer değiştirmeyi temsil eden bir amaç fonksiyonu yardımıyla belirlenmiştir. Optimizasyon için çiçek tozlaşması algoritması (FPA), ateş böceği algoritması (FA) ve yarasa algoritması (BA) olmak üzere üç farklı meta-sezgisel algoritma kullanılmıştır. Üç algoritmanın karşılaştırma sonuçları, ateş böceği ve çiçek tozlaşması algoritmalarının benzer sonuçlar verdiğini ve çiçek tozlaşması algoritmasının uygulama açısından en uygun algoritma olduğunu göstermiştir.

Kaynakça

  • 1. Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M., 2021. Optimum design of reinforced concrete T-beam considering environmental factors via flower pollination algorithm. International Journal of Engineering and Applied Sciences, 13(4), 166-178.
  • 2. Yang X.S., 2008. Nature-inspired metaheuristic algorithms. Luniver Press: Bristol.
  • 3. Yang, X.S., 2010. Firefly algorithm, levy flights and global optimization. In Research and Development in Intelligent Systems XXVI: Incorporating Applications and Innovations in Intelligent Systems XVII, Springer London, 209-218.
  • 4. Yang, X.S., Gandomi, A.H., 2012. Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 29(5), 464-483.
  • 5. Gandomi, A.H., Yang, X.S., 2011. Benchmark problems in structural optimization. In Computational Optimization, Methods and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 259-281.
  • 6. Erdal, F., 2017. A firefly algorithm for optimum design of new-generation beams. Engineering Optimization, 49(6), 915-931.
  • 7. Hasançebi, O., Teke, T., Pekcan, O., 2013. A bat-inspired algorithm for structural optimization. Computers & Structures, 128, 77-90.
  • 8. Sorkhabi, R.V., Naseri, A., Naseri, M., 2014. Optimization of the castellated beams by particle swarm algorithms method. APCBEE Procedia, 9, 381-387.
  • 9. Barkiah, I., Darmawan, A.R., 2021. Comparison behavior of flexural capacity castellated beam of hexagonal opening with circle opening. Internatıonal Journal of Civil Engineering and Technology (IJCIET), 12(8).
  • 10. Elaiwi, S.S., 2019. Analysis and design of castellated beams. Doctoral Dissertation. University of Plymouth. United Kingdom.
  • 11. Hosain, M.U., Spiers, W.G., 1973. Experiments on castellated steel beams. J Am Weld Soc, Weld Res Suppl0, 52(8),329-3423.
  • 12. Pachpor, P.D., Gupta, L.M., Deshpande, N.V., Bedi, K., 2011. Parameteric study of castellated Beam. Advanced Materials Research, 163, 842-845.
  • 13. Megharief, J.D., 1997. Behavior of composite castellated beams. Master Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Canada.
  • 14. Kshirsagar, V.V., Parekar, S.R., 2018. Behaviour of castellated beams with and without stiffeners-A review. Behaviour, 5(04), 2964-2969.
  • 15. Mezher, N.A.M., Noori, A.R., Ertürkmen, D., 2023. Influence of the web opening shapes on the bending and free vibration responses of castellated steel beams. International Journal of Engineering Technologies IJET, 8(2), 83-100.
  • 16. Mehetre, A.J., Talikoti, R.S., 2020. Effect of fillet radii on moment carrying capacity of sinusoidal web opening castellated steel beams in comparison with hexagonal web openings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, 151-161.
  • 17. Hashim, N.S., De’nan, F., 2024. The magnitude of stress concentration of I-beam with web opening because of lateral-torsional buckling effects. World Journal of Engineering, 21(2), 386-397.
  • 18. Boyer, J.P., 1964. Castellated beams-new developments. AISC Engineering Journal, 1(3), 104.
  • 19. Mohebkhah, A., Showkati, H., 2005. Bracing requirements for inelastic castellated beams. Journal of Constructional Steel Research, 61(10), 1373-1386.
  • 20. Durif, S., Bouchair, A., 2012. Behavior of cellular beams with sinusoidal openings. Procedia Engineering, 40, 108-113.
  • 21. Deshmukh, M.N., Kasnale, A., 2019. Behaviour of castellated beam with coupled stiffener. Behaviour, 6(06), 353-360.
  • 22. Yuan, W.B., Yu, N.T., Bao, Z.S., Wu, L.P., 2016. Deflection of castellated beams subjected to uniformly distributed transverse loading. International Journal of Steel Structures, 16, 813-821.
  • 23. De Oliveira, J.P., Cardoso, D.C.T., Sotelino, E.D., 2019. Elastic flexural local buckling of Litzka castellated beams: Explicit equations and FE parametric study. Engineering Structures, 186, 436-445.
  • 24. Kang, L., Hong, S., Liu, X., 2021. Shear behaviour and strength design of cellular beams with circular or elongated openings. Thin-Walled Structures, 160, 107353.
  • 25. Ferreira, F.P.V., Martins, C.H., De Nardin, S., 2020. Advances in composite beams with web openings and composite cellular beams. Journal of Constructional Steel Research, 172, 106182.
  • 26. Demirdjian, S., 1999. Stability of castellated beam webs. Master Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Canada.
  • 27. Kshirsagar, V.V., Parekar, S.R., 2018. Behaviour of castellated beams with and without stiffeners-A review. Behaviour, 5(04), 2964-2969.
  • 28. Morkhade, S.G., Shirke, T., Mansuke, A., Chavan, M.U., Gupta, L.M., 2021. Experimental and analytical investigation of castellated steel beams with varying openings eccentricity. Journal of the Institution of Engineers (India): Series A, 102(2), 479-488.
  • 29. Verweij, J.G., 2010. Cellular beam-columns in portal frame structures. Master Thesis, Delft University of Technology, Delft, The Netherlands.
  • 30. Panedpojaman, P., Thepchatri, T., Limkatanyu, S., 2014. Novel design equations for shear strength of local web-post buckling in cellular beams. Thin-Walled Structures, 76, 92-104.
  • 31. Grilo, L.F., Fakury, R.H., De Souza Veríssimo, G., 2018. Design procedure for the web-post buckling of steel cellular beams. Journal of Constructional Steel Research, 148, 525-541.
  • 32. Tsavdaridis, K.D., D'Mello, C., 2011. Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. Journal of Constructional Steel Research, 67(10), 1605- 1620.
  • 33. Erdal, F., Saka, M.P., 2013. Ultimate load carrying capacity of optimally designed steel cellular beams. Journal of Constructional Steel Research, 80, 355-368.
  • 34. Łukasik, S., Żak, S., 2009. Firefly algorithm for continuous constrained optimization tasks. In Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems: First International Conference, Springer Berlin Heidelberg. ICCCI 2009, Wrocław, Poland, October 5-7, 2009. Proceedings 1, 97-106.
  • 35. Johari, N.F., Zain, A.M., Noorfa, M.H., Udin, A., 2013. Firefly algorithm for optimization problem. Applied Mechanics and Materials, 421, 512-517.
  • 36. Yang, X.S., Bekdaş, G., Nigdeli, S.M., 2016. Metaheuristics and optimization in civil engineering. Switzerland, Cham: Springer International Publishing.
  • 37. Bekdaş, G., Nigdeli, S.M., Yücel, M., Kayabekir, A.E., 2021. Yapay zeka optimizasyon algoritmaları ve mühendislik uygulamaları. Seçkin Yayıncılık, Ankara.

Deflection Optimization of Castellated Beams Using Three Different Meta‑heuristic Algorithms

Yıl 2024, Cilt: 39 Sayı: 4, 979 - 990, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606085

Öz

The usage of castellated beams has recently attracted great attention due to their versatile architectural features. These include distinct geometric forms containing web openings in different shapes. Castellated beams are economically and environmentally beneficial by providing increased flexural rigidity without increasing their weight by changing production techniques. These beams are used in various structures such as hospitals, warehouses, parking lots, schools, and shopping malls. In this study, the performance of castellated beams with hexagonal web openings is optimized for three different materials such as S235, S255, and S355. The optimum section dimensions are computed using an objective function representing the maximum vertical displacement of the beam. Three different meta-heuristic algorithms, namely, the flower pollination algorithm (FPA), firefly algorithm (FA), and bat algorithm (BA), are employed. The comparison results of the three algorithms showed that firefly and flower pollination algorithms have similar results and the flower pollination algorithm is the most suitable for engineering applications.

Kaynakça

  • 1. Kayabekir, A.E., Bekdaş, G., Nigdeli, S.M., 2021. Optimum design of reinforced concrete T-beam considering environmental factors via flower pollination algorithm. International Journal of Engineering and Applied Sciences, 13(4), 166-178.
  • 2. Yang X.S., 2008. Nature-inspired metaheuristic algorithms. Luniver Press: Bristol.
  • 3. Yang, X.S., 2010. Firefly algorithm, levy flights and global optimization. In Research and Development in Intelligent Systems XXVI: Incorporating Applications and Innovations in Intelligent Systems XVII, Springer London, 209-218.
  • 4. Yang, X.S., Gandomi, A.H., 2012. Bat algorithm: A novel approach for global engineering optimization. Engineering Computations, 29(5), 464-483.
  • 5. Gandomi, A.H., Yang, X.S., 2011. Benchmark problems in structural optimization. In Computational Optimization, Methods and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 259-281.
  • 6. Erdal, F., 2017. A firefly algorithm for optimum design of new-generation beams. Engineering Optimization, 49(6), 915-931.
  • 7. Hasançebi, O., Teke, T., Pekcan, O., 2013. A bat-inspired algorithm for structural optimization. Computers & Structures, 128, 77-90.
  • 8. Sorkhabi, R.V., Naseri, A., Naseri, M., 2014. Optimization of the castellated beams by particle swarm algorithms method. APCBEE Procedia, 9, 381-387.
  • 9. Barkiah, I., Darmawan, A.R., 2021. Comparison behavior of flexural capacity castellated beam of hexagonal opening with circle opening. Internatıonal Journal of Civil Engineering and Technology (IJCIET), 12(8).
  • 10. Elaiwi, S.S., 2019. Analysis and design of castellated beams. Doctoral Dissertation. University of Plymouth. United Kingdom.
  • 11. Hosain, M.U., Spiers, W.G., 1973. Experiments on castellated steel beams. J Am Weld Soc, Weld Res Suppl0, 52(8),329-3423.
  • 12. Pachpor, P.D., Gupta, L.M., Deshpande, N.V., Bedi, K., 2011. Parameteric study of castellated Beam. Advanced Materials Research, 163, 842-845.
  • 13. Megharief, J.D., 1997. Behavior of composite castellated beams. Master Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Canada.
  • 14. Kshirsagar, V.V., Parekar, S.R., 2018. Behaviour of castellated beams with and without stiffeners-A review. Behaviour, 5(04), 2964-2969.
  • 15. Mezher, N.A.M., Noori, A.R., Ertürkmen, D., 2023. Influence of the web opening shapes on the bending and free vibration responses of castellated steel beams. International Journal of Engineering Technologies IJET, 8(2), 83-100.
  • 16. Mehetre, A.J., Talikoti, R.S., 2020. Effect of fillet radii on moment carrying capacity of sinusoidal web opening castellated steel beams in comparison with hexagonal web openings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44, 151-161.
  • 17. Hashim, N.S., De’nan, F., 2024. The magnitude of stress concentration of I-beam with web opening because of lateral-torsional buckling effects. World Journal of Engineering, 21(2), 386-397.
  • 18. Boyer, J.P., 1964. Castellated beams-new developments. AISC Engineering Journal, 1(3), 104.
  • 19. Mohebkhah, A., Showkati, H., 2005. Bracing requirements for inelastic castellated beams. Journal of Constructional Steel Research, 61(10), 1373-1386.
  • 20. Durif, S., Bouchair, A., 2012. Behavior of cellular beams with sinusoidal openings. Procedia Engineering, 40, 108-113.
  • 21. Deshmukh, M.N., Kasnale, A., 2019. Behaviour of castellated beam with coupled stiffener. Behaviour, 6(06), 353-360.
  • 22. Yuan, W.B., Yu, N.T., Bao, Z.S., Wu, L.P., 2016. Deflection of castellated beams subjected to uniformly distributed transverse loading. International Journal of Steel Structures, 16, 813-821.
  • 23. De Oliveira, J.P., Cardoso, D.C.T., Sotelino, E.D., 2019. Elastic flexural local buckling of Litzka castellated beams: Explicit equations and FE parametric study. Engineering Structures, 186, 436-445.
  • 24. Kang, L., Hong, S., Liu, X., 2021. Shear behaviour and strength design of cellular beams with circular or elongated openings. Thin-Walled Structures, 160, 107353.
  • 25. Ferreira, F.P.V., Martins, C.H., De Nardin, S., 2020. Advances in composite beams with web openings and composite cellular beams. Journal of Constructional Steel Research, 172, 106182.
  • 26. Demirdjian, S., 1999. Stability of castellated beam webs. Master Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Canada.
  • 27. Kshirsagar, V.V., Parekar, S.R., 2018. Behaviour of castellated beams with and without stiffeners-A review. Behaviour, 5(04), 2964-2969.
  • 28. Morkhade, S.G., Shirke, T., Mansuke, A., Chavan, M.U., Gupta, L.M., 2021. Experimental and analytical investigation of castellated steel beams with varying openings eccentricity. Journal of the Institution of Engineers (India): Series A, 102(2), 479-488.
  • 29. Verweij, J.G., 2010. Cellular beam-columns in portal frame structures. Master Thesis, Delft University of Technology, Delft, The Netherlands.
  • 30. Panedpojaman, P., Thepchatri, T., Limkatanyu, S., 2014. Novel design equations for shear strength of local web-post buckling in cellular beams. Thin-Walled Structures, 76, 92-104.
  • 31. Grilo, L.F., Fakury, R.H., De Souza Veríssimo, G., 2018. Design procedure for the web-post buckling of steel cellular beams. Journal of Constructional Steel Research, 148, 525-541.
  • 32. Tsavdaridis, K.D., D'Mello, C., 2011. Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. Journal of Constructional Steel Research, 67(10), 1605- 1620.
  • 33. Erdal, F., Saka, M.P., 2013. Ultimate load carrying capacity of optimally designed steel cellular beams. Journal of Constructional Steel Research, 80, 355-368.
  • 34. Łukasik, S., Żak, S., 2009. Firefly algorithm for continuous constrained optimization tasks. In Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems: First International Conference, Springer Berlin Heidelberg. ICCCI 2009, Wrocław, Poland, October 5-7, 2009. Proceedings 1, 97-106.
  • 35. Johari, N.F., Zain, A.M., Noorfa, M.H., Udin, A., 2013. Firefly algorithm for optimization problem. Applied Mechanics and Materials, 421, 512-517.
  • 36. Yang, X.S., Bekdaş, G., Nigdeli, S.M., 2016. Metaheuristics and optimization in civil engineering. Switzerland, Cham: Springer International Publishing.
  • 37. Bekdaş, G., Nigdeli, S.M., Yücel, M., Kayabekir, A.E., 2021. Yapay zeka optimizasyon algoritmaları ve mühendislik uygulamaları. Seçkin Yayıncılık, Ankara.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Mühendisliği
Bölüm Makaleler
Yazarlar

Marwan Abdulkareem Shakir Albayati Bu kişi benim 0009-0001-0088-1114

Ahmad Reshad Noorı 0000-0001-6232-6303

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 4 Kasım 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Albayati, M. A. S., & Noorı, A. R. (2024). Üç Farklı Metasezgisel Algoritma Kullanılarak Petek Kirişlerin Yer Değiştirme Optimizasyonu. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 979-990. https://doi.org/10.21605/cukurovaumfd.1606085