Araştırma Makalesi
BibTex RIS Kaynak Göster

Çok Modelli Kestirimci Bakım: Genel Bakış ve Doğrusal Sistem Perspektifi

Yıl 2024, Cilt: 39 Sayı: 4, 1039 - 1052, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606126

Öz

Çok modelli bakım tahmini, daha iyi arıza öngörüleri sağlamak amacıyla farklı girdilerden ve modellerden gelen bilgilerin birleşik bir şekilde işlendiği, son zamanlarda trend olan bir yaklaşımdır. Çok modelli sistemler, etiketli veya etiketsiz sensör gözlemlerinden, bilgi tabanlarından ve cihaza özgü kısıtlamalardan akıllıca yararlanmayı amaçlamaktadır. Bu yazıda hem tek hem de çoklu model yaklaşımlarına genel bir bakış sunuyoruz ve doğrusal bir sistem perspektifi sunuyoruz. Önerilen sistem, ölçüm alanının doğrusal sınırlar aracılığıyla nominal ve arıza operasyon bölgelerine bölünmesini ve kalan faydalı ömür hesaplamalarını sağlamak için sınırlardan uzaklıkların takip edilmesini sağlayacak şekilde doğrusal sınıflandırma ve tahmin yöntemlerinden yararlanır. Benimsenen doğrusal yaklaşım, tasarım sürecini basitleştirir ve tahmin performansını artırmak için farklı yöntemleri verimli bir şekilde birleştirebilir. Ayrıca, sunulan metot üretilmiş bir veri setinde simüle edildi.

Kaynakça

  • 1. Borgi, T., Hidri, A., Neef, B., Naceur, M.S., 2017. Data analytics for predictive maintenance of industrial robots. 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), 412-417. IEEE.
  • 2. Biswal, S., Sabareesh, G.R., 2015. Design and development of a wind turbine test rig for condition monitoring studies. In 2015 International Conference on Industrial Instrumentation and Control (ICIC), 891-896. IEEE. 3. Peres, R.S., Rocha, A.D., Leitao, P., Barata, J., 2018. IDARTS–towards intelligent data analysis and real-time supervision for industry 4.0. Computers in Industry, 101, 138-146.
  • 4. Sezer, E., Romero, D., Guedea, F., Macchi, M., Emmanouilidis, C., 2018. An industry 4.0-enabled low cost predictive maintenance approach for smes. In 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1-8. IEEE.
  • 5. Lee, J., Bagheri, B., Kao, H.A., 2014. Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. In International Proceeding of Int Conference on Industrial Informatics (INDIN), 1-6.
  • 6. Jin, W., Liu, Z., Shi, Z., Jin, C., Lee, J., 2017. CPS-enabled worry-free industrial applications. In 2017 Prognostics and System Health Management Conference (PHM-Harbin), 1-7. IEEE.
  • 7. Gunes, V., Peter, S., Givargis, T., Vahid, F., 2014. A survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Internet Inf. Syst., 8(12), 4242-4268.
  • 8. Nunes, P., Santos, J., Rocha, E., 2023. Challenges in predictive maintenance–A review. CIRP Journal of Manufacturing Science and Technology, 40, 53-67.
  • 9. Hao, Q., Xue, Y., Shen, W., Jones, B., Zhu, J., 2010. A decision support system for integrating corrective maintenance, preventive maintenance, and condition-based maintenance. In Construction Research Congress 2010: Innovation for Reshaping Construction Practice, 470-479.
  • 10. Mobley, R.K., 2002. An introduction to predictive maintenance. Elsevier.
  • 11. Lee, J., Kao, H.A., Yang, S., 2014. Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp, 16, 3-8.
  • 12. Bagheri, B., Yang, S., Kao, H. A., Lee, J., 2015. Cyber-physical systems architecture for self-aware machines in industry 4.0 environment. IFAC-PapersOnLine, 48(3), 1622-1627.
  • 13. Unnikrishnan, A., 2017. Moving towards industry 4.0: a systematic. Int. J. Pure Appl. Math., 117(20), 929-936.
  • 14. Fox, H., Pillai, A.C., Friedrich, D., Collu, M., Dawood, T., Johanning, L., 2022. A review of predictive and prescriptive offshore wind farm operation and maintenance. Energies, 15(2), 504.
  • 15. Lepenioti, K., Bousdekis, A., Apostolou, D., Mentzas, G., 2020. Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70.
  • 16. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G., 2019. A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
  • 17. Lee, J., Lapira, E., Bagheri, B., Kao, H.A., 2013. Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41.
  • 18. Muhuri, P.K., Shukla, A.K., Abraham, A., 2019. Industry 4.0: A bibliometric analysis and detailed overview. Engineering Applications of Artificial Intelligence, 78, 218-235.
  • 19. O’donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T., 2015. Big data in manufacturing: A systematic mapping study. Journal of Big Data, 2, 1-22.
  • 20. Jin, X., Ni, J., 2019. Physics-based Gaussian process for the health monitoring for a rolling bearing. Acta Astronautica, 154, 133-139.
  • 21. Downey, A., Lui, Y.H., Hu, C., Laflamme, S., Hu, S., 2019. Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds. Reliability Engineering & System Safety, 182, 1-12.
  • 22. Eker, O.F., Camci, F., Jennions, I.K., 2016. Physics-based prognostic modelling of filter clogging phenomena. Mechanical Systems and Signal Processing, 75, 395-412.
  • 23. Climente-Alarcon, V., Nair, D., Sundaria, R., Antonino-Daviu, J.A., Arkkio, A., 2017. Combined model for simulating the effect of transients on a damaged rotor cage. IEEE Transactions on Industry Applications, 53(4), 3528-3537.
  • 24. Qiao, G., Weiss, B.A., 2018. Quick health assessment for industrial robot health degradation and the supporting advanced sensing development. Journal of Manufacturing Systems, 48, 51-59.
  • 25. Li, J., Xiao, M., Liang, Y., Tang, X., Li, C., 2018. Three-dimensional simulation and prediction of solenoid valve failure mechanism based on finite element model. In IOP Conference Series: Earth and Environmental Science, 108(2), 022035. IOP Publishing.
  • 26. Cholette, M.E., Yu, H., Borghesani, P., Ma, L., Kent, G., 2019. Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes. Reliability Engineering & System Safety, 183, 184-196.
  • 27. Boullart, L., Krijgsman, A., Vingerhoeds, R.A. (Eds.), 2013. Application of artificial intelligence in process control: Lecture notes Erasmus intensive course. Elsevier.
  • 28. Freyermuth, B., 1992. Knowledge based incipient fault diagnosis of industrial robots. In Fault Detection, Supervision and Safety for Technical Processes 1991, 369-375. Pergamon.
  • 29. Li, S., Lv, C., Guo, Z., Wang, M., 2012. Health condition-based maintenance decision intelligent reasoning method. In 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 405-408. IEEE.
  • 30. Vingerhoeds, R.A., Janssens, P., Netten, B.D., Fernández-Montesinos, M.A., 1995. Enhancing off-line and on-line condition monitoring and fault diagnosis. Control Engineering Practice, 3(11), 1515-1528.
  • 31. Ma, G., Jiang, L., Xu, G., Zheng, J., 2015. A model of intelligent fault diagnosis of power equipment based on CBR. Mathematical Problems in Engineering, 2015.
  • 32. Berecibar, M., Devriendt, F., Dubarry, M., Villarreal, I., Omar, N., Verbeke, W., Van Mierlo, J., 2016. Online state of health estimation on NMC cells based on predictive analytics. Journal of Power Sources, 320, 239- 250.
  • 33. Barraza-Barraza, D., Tercero-Gómez, V.G., Beruvides, M.G., Limón-Robles, J., 2017. An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth. Mechanical Systems and Signal Processing, 82, 519-536.
  • 34. Lee, W.J., 2017. Anomaly detection and severity prediction of air leakage in train braking pipes. International Journal of Prognostics and Health Management, 8(3).
  • 35. Xu, M., Jin, X., Kamarthi, S., Noor-E-Alam, M., 2018. A failure-dependency modeling and state discretization approach for condition-based maintenance optimization of multi-component systems. Journal of Manufacturing Systems, 47, 141-152.
  • 36. Coble, J., Hines, J.W., 2011. Applying the general path model to estimation of remaining useful life. International Journal of Prognostics and Health Management, 2, 71.
  • 37. Haque, M.S., Shaheed, M.N.B., Choi, S., 2018. RUL estimation of power semiconductor switch using evolutionary time series prediction. In 2018 IEEE Transportation Electrification Conference and Expo (ITEC), 564- 569. IEEE.
  • 38. Zhan, Y., & Mechefske, C. K. (2007). Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov–Smirnov test statistic—Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis. Mechanical Systems and Signal Processing, 21(5), 1953-1982.
  • 39. Zhan, Y., Mechefske, C.K., 2007. Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov–Smirnov test statistic—Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis. Mechanical Systems and Signal Processing, 21(5), 1953-1982.
  • 40. Cheng, C., Yu, L., Chen, L.J., 2012. Structural nonlinear damage detection based on ARMA-GARCH model. Applied Mechanics and Materials, 204, 2891-2896.
  • 41. Zhang, D., Bailey, A.D., Djurdjanovic, D., 2016. Bayesian identification of hidden Markov models and their use for condition-based monitoring. IEEE Transactions on Reliability, 65(3), 1471-1482.
  • 42. Pourbabaee, B., Meskin, N., Khorasani, K., 2013. Multiple-model based sensor fault diagnosis using hybrid Kalman filter approach for nonlinear gas turbine engines. In 2013 American Control Conference, 4717-4723. IEEE.
  • 43. Li, G., Wang, X., Yang, A., Rong, M., Yang, K., 2017. Failure prognosis of high voltage circuit breakers with temporal latent Dirichlet allocation. Energies, 10(11), 1913.
  • 44. Dababneh, A., Ozbolat, I.T., 2015. Predictive reliability and lifetime methodologies for circuit boards. Journal of Manufacturing Systems, 37, 141-148.
  • 45. Tang, D., Sheng, W., Yu, J., 2018. Dynamic condition-based maintenance policy for degrading systems described by a random-coefficient autoregressive model: A comparative study. Eksploatacja i Niezawodność, 20(4), 590-601.
  • 46. Li, Y., Liu, S., Shu, L., 2019. Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data. Renewable Energy, 134, 357-366.
  • 47. Aye, S.A., Heyns, P.S., 2017. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mechanical Systems and Signal Processing, 84, 485-498.
  • 48. Hu, Y.W., Zhang, H.C., Liu, S.J., Lu, H.T., 2018. Sequential Monte Carlo method toward online RUL assessment with applications. Chinese Journal of Mechanical Engineering, 31(1), 1-12.
  • 49. Wu, Z., Luo, H., Yang, Y., Lv, P., Zhu, X., Ji, Y., Wu, B., 2018. K-PdM: KPI-oriented machinery deterioration estimation framework for predictive maintenance using cluster-based hidden Markov model. IEEE Access, 6, 41676-41687.
  • 50. Kobayashi, K., Kaito, K., Lethanh, N., 2012. A statistical deterioration forecasting method using hidden Markov model for infrastructure management. Transportation Research Part B: Methodological, 46(4), 544-561.
  • 51. Zhou, Z.J., Hu, C.H., Xu, D.L., Chen, M.Y., Zhou, D.H., 2010. A model for real-time failure prognosis based on hidden Markov model and belief rule base. European Journal of Operational Research, 207(1), 269-283.
  • 52. Javed, K., Gouriveau, R., Zerhouni, N., 2017. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels. Mechanical Systems and Signal Processing, 94, 214-236.
  • 53. Russell, S.J., Norvig, P., 2010. Artificial intelligence a modern approach. London.
  • 54. Singh, K., Malik, H., Sharma, R., 2017. Condition monitoring of wind turbine gearbox using electrical signatures. In 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), 1-6. IEEE. 55. Gajewski, J., Vališ, D., 2017. The determination of combustion engine condition and reliability using oil analysis by MLP and RBF neural networks. Tribology International, 115, 557-572.
  • 56. Ayo-Imoru, R.M., Cilliers, A.C., 2018. Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant. Annals of Nuclear Energy, 118, 61-70.
  • 57. Luwei, K. C., Yunusa-Kaltungo, A., Sha’aban, Y.A., 2018. Integrated fault detection framework for classifying rotating machine faults using frequency domain data fusion and artificial neural networks. Machines, 6(4), 59.
  • 58. Koprinkova-Hristova, P., 2013. Reinforcement learning for predictive maintenance of industrial plants. Inf. Technol. Control, 11(1), 21-28.
  • 59. Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., Wang, J., 2017. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Transactions on Industrial Electronics, 65(2), 1539-1548.
  • 60. Dong, D., Li, X.Y., Sun, F.Q., 2017. Life prediction of jet engines based on LSTM-recurrent neural networks. In 2017 Prognostics and system health management conference (PHM-Harbin), 1-6. IEEE.
  • 61. Hinchi, A.Z., Tkiouat, M., 2018. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network. Procedia Computer Science, 127, 123-132.
  • 62. Zhang, J., Wang, P., Yan, R., Gao, R.X., 2018. Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems, 48, 78-86.
  • 63. Li, X., Ding, Q., Sun, J.Q., 2018. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering & System Safety, 172, 1-11.
  • 64. Ren, L., Sun, Y., Cui, J., Zhang, L., 2018. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems, 48, 71-77.
  • 65. Huang, W., Cheng, J., Yang, Y., Guo, G., 2019. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis. Neurocomputing, 359, 77-92.
  • 66. Chen, Z., Gryllias, K., Li, W., 2019. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine. Mechanical Systems and Signal Processing, 133, 106272.
  • 67. Jin, W., Shi, Z., Siegel, D., Dersin, P., Douziech, C., Pugnaloni, M., Lee, J., 2015. Development and evaluation of health monitoring techniques for railway point machines. In 2015 IEEE Conference on Prognostics and Health Management (PHM), 1-11. IEEE.
  • 68. Von Birgelen, A., Buratti, D., Mager, J., Niggemann, O., 2018. Self-organizing maps for anomaly localization and predictive maintenance in cyber-physical production systems. Procedia Cirp, 72, 480-485.
  • 69. Lu, F., Wu, J., Huang, J., Qiu, X., 2019. Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm. Aerospace Science and Technology, 84, 661-671.
  • 70. Sankararaman, S., Daigle, M.J., Goebel, K., 2014. Uncertainty quantification in remaining useful life prediction using first-order reliability methods. IEEE Transactions on Reliability, 63(2), 603-619.
  • 71. Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., Zerhouni, N., 2017. Prognostics and health management for maintenance practitioners-Review, implementation and tools evaluation. International Journal of Prognostics and Health Management, 8(3), 1-31.
  • 72. Leksir, Y.L., Mansour, M., Moussaoui, A., 2018. Localization of thermal anomalies in electrical equipment using infrared thermography and support vector machine. Infrared Physics & Technology, 89, 120-128.
  • 73. Duan, C., Deng, C., Li, N., 2019. Reliability assessment for CNC equipment based on degradation data. The International Journal of Advanced Manufacturing Technology, 100, 421-434.
  • 74. Zhao, Y., Wang, S., Xiao, F., 2013. Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD). Applied Energy, 112, 1041-1048.
  • 75. Xiao, Y., Wang, H., Xu, W., Zhou, J., 2016. Robust one-class SVM for fault detection. Chemometrics and Intelligent Laboratory Systems, 151, 15-25.
  • 76. Jimenez, J.J.M., Schwartz, S., Vingerhoeds, R., Grabot, B., Salaün, M., 2020. Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics. Journal of Manufacturing Systems, 56, 539-557.
  • 77. Hong, J., Miao, X., Han, L., Ma, Y., 2009. Prognostics model for predicting aero-engine bearing grade-life. In Turbo Expo: Power for Land, Sea, and Air, 48821, 639-647.
  • 78. Orsagh, R.F., Sheldon, J., Klenke, C.J., 2003. Prognostics/diagnostics for gas turbine engine bearings. Engineering, 36843, 159-167.
  • 79. Soualhi, A., Razik, H., Guy, C., Doan, D.D., 2003. Prognosis of bearing failures using hidden Markov models and the adaptive neuro-fuzzy inference system. IEEE Transactions on Industrial Electronics 61(6), 2864- 2874.
  • 80. Liao, W., Li, D., 2015. An improved prediction model for equipment performance degradation based on Fuzzy-Markov Chain. 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 6-10. IEEE.
  • 81. Chiachío, J., Chiachío, M., Prescott, D., Andrews, J., 2019. A knowledge-based prognostics framework for railway track geometry degradation. Reliability Engineering & System Safety, 181(2019), 127-141.
  • 82. Björck, Å., 1990. Least squares methods. Handbook of Numerical Analysis, 1, 465-652.

Multi-Model Predictive Maintenance: Overview and A Linear System Perspective

Yıl 2024, Cilt: 39 Sayı: 4, 1039 - 1052, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606126

Öz

Multi-model predictive maintenance is a recently trending approach where information from different inputs and models are processed in a unified fashion in order to provide better failure prognostics. Multi-model systems aim to make clever use of labeled or unlabeled sensor observations, knowledge bases and device specific constraints. In this paper we present an overview for both single and multi-model approaches and provide a linear system perspective. The proposed system leverages linear classification and prediction methods such that the measurement space is partitioned via linear boundaries into nominal and failure operation regions and the distances from boundaries are tracked for providing remaining useful life calculations. The adopted linear approach simplifies the design process and it can efficiently incorporate different modalities in order to enhance the prediction performance. Also, the proposed method is simulated in generated dataset.

Kaynakça

  • 1. Borgi, T., Hidri, A., Neef, B., Naceur, M.S., 2017. Data analytics for predictive maintenance of industrial robots. 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), 412-417. IEEE.
  • 2. Biswal, S., Sabareesh, G.R., 2015. Design and development of a wind turbine test rig for condition monitoring studies. In 2015 International Conference on Industrial Instrumentation and Control (ICIC), 891-896. IEEE. 3. Peres, R.S., Rocha, A.D., Leitao, P., Barata, J., 2018. IDARTS–towards intelligent data analysis and real-time supervision for industry 4.0. Computers in Industry, 101, 138-146.
  • 4. Sezer, E., Romero, D., Guedea, F., Macchi, M., Emmanouilidis, C., 2018. An industry 4.0-enabled low cost predictive maintenance approach for smes. In 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1-8. IEEE.
  • 5. Lee, J., Bagheri, B., Kao, H.A., 2014. Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. In International Proceeding of Int Conference on Industrial Informatics (INDIN), 1-6.
  • 6. Jin, W., Liu, Z., Shi, Z., Jin, C., Lee, J., 2017. CPS-enabled worry-free industrial applications. In 2017 Prognostics and System Health Management Conference (PHM-Harbin), 1-7. IEEE.
  • 7. Gunes, V., Peter, S., Givargis, T., Vahid, F., 2014. A survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Internet Inf. Syst., 8(12), 4242-4268.
  • 8. Nunes, P., Santos, J., Rocha, E., 2023. Challenges in predictive maintenance–A review. CIRP Journal of Manufacturing Science and Technology, 40, 53-67.
  • 9. Hao, Q., Xue, Y., Shen, W., Jones, B., Zhu, J., 2010. A decision support system for integrating corrective maintenance, preventive maintenance, and condition-based maintenance. In Construction Research Congress 2010: Innovation for Reshaping Construction Practice, 470-479.
  • 10. Mobley, R.K., 2002. An introduction to predictive maintenance. Elsevier.
  • 11. Lee, J., Kao, H.A., Yang, S., 2014. Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp, 16, 3-8.
  • 12. Bagheri, B., Yang, S., Kao, H. A., Lee, J., 2015. Cyber-physical systems architecture for self-aware machines in industry 4.0 environment. IFAC-PapersOnLine, 48(3), 1622-1627.
  • 13. Unnikrishnan, A., 2017. Moving towards industry 4.0: a systematic. Int. J. Pure Appl. Math., 117(20), 929-936.
  • 14. Fox, H., Pillai, A.C., Friedrich, D., Collu, M., Dawood, T., Johanning, L., 2022. A review of predictive and prescriptive offshore wind farm operation and maintenance. Energies, 15(2), 504.
  • 15. Lepenioti, K., Bousdekis, A., Apostolou, D., Mentzas, G., 2020. Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70.
  • 16. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, R.D.P., Basto, J.P., Alcalá, S.G., 2019. A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.
  • 17. Lee, J., Lapira, E., Bagheri, B., Kao, H.A., 2013. Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41.
  • 18. Muhuri, P.K., Shukla, A.K., Abraham, A., 2019. Industry 4.0: A bibliometric analysis and detailed overview. Engineering Applications of Artificial Intelligence, 78, 218-235.
  • 19. O’donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T., 2015. Big data in manufacturing: A systematic mapping study. Journal of Big Data, 2, 1-22.
  • 20. Jin, X., Ni, J., 2019. Physics-based Gaussian process for the health monitoring for a rolling bearing. Acta Astronautica, 154, 133-139.
  • 21. Downey, A., Lui, Y.H., Hu, C., Laflamme, S., Hu, S., 2019. Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds. Reliability Engineering & System Safety, 182, 1-12.
  • 22. Eker, O.F., Camci, F., Jennions, I.K., 2016. Physics-based prognostic modelling of filter clogging phenomena. Mechanical Systems and Signal Processing, 75, 395-412.
  • 23. Climente-Alarcon, V., Nair, D., Sundaria, R., Antonino-Daviu, J.A., Arkkio, A., 2017. Combined model for simulating the effect of transients on a damaged rotor cage. IEEE Transactions on Industry Applications, 53(4), 3528-3537.
  • 24. Qiao, G., Weiss, B.A., 2018. Quick health assessment for industrial robot health degradation and the supporting advanced sensing development. Journal of Manufacturing Systems, 48, 51-59.
  • 25. Li, J., Xiao, M., Liang, Y., Tang, X., Li, C., 2018. Three-dimensional simulation and prediction of solenoid valve failure mechanism based on finite element model. In IOP Conference Series: Earth and Environmental Science, 108(2), 022035. IOP Publishing.
  • 26. Cholette, M.E., Yu, H., Borghesani, P., Ma, L., Kent, G., 2019. Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes. Reliability Engineering & System Safety, 183, 184-196.
  • 27. Boullart, L., Krijgsman, A., Vingerhoeds, R.A. (Eds.), 2013. Application of artificial intelligence in process control: Lecture notes Erasmus intensive course. Elsevier.
  • 28. Freyermuth, B., 1992. Knowledge based incipient fault diagnosis of industrial robots. In Fault Detection, Supervision and Safety for Technical Processes 1991, 369-375. Pergamon.
  • 29. Li, S., Lv, C., Guo, Z., Wang, M., 2012. Health condition-based maintenance decision intelligent reasoning method. In 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 405-408. IEEE.
  • 30. Vingerhoeds, R.A., Janssens, P., Netten, B.D., Fernández-Montesinos, M.A., 1995. Enhancing off-line and on-line condition monitoring and fault diagnosis. Control Engineering Practice, 3(11), 1515-1528.
  • 31. Ma, G., Jiang, L., Xu, G., Zheng, J., 2015. A model of intelligent fault diagnosis of power equipment based on CBR. Mathematical Problems in Engineering, 2015.
  • 32. Berecibar, M., Devriendt, F., Dubarry, M., Villarreal, I., Omar, N., Verbeke, W., Van Mierlo, J., 2016. Online state of health estimation on NMC cells based on predictive analytics. Journal of Power Sources, 320, 239- 250.
  • 33. Barraza-Barraza, D., Tercero-Gómez, V.G., Beruvides, M.G., Limón-Robles, J., 2017. An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth. Mechanical Systems and Signal Processing, 82, 519-536.
  • 34. Lee, W.J., 2017. Anomaly detection and severity prediction of air leakage in train braking pipes. International Journal of Prognostics and Health Management, 8(3).
  • 35. Xu, M., Jin, X., Kamarthi, S., Noor-E-Alam, M., 2018. A failure-dependency modeling and state discretization approach for condition-based maintenance optimization of multi-component systems. Journal of Manufacturing Systems, 47, 141-152.
  • 36. Coble, J., Hines, J.W., 2011. Applying the general path model to estimation of remaining useful life. International Journal of Prognostics and Health Management, 2, 71.
  • 37. Haque, M.S., Shaheed, M.N.B., Choi, S., 2018. RUL estimation of power semiconductor switch using evolutionary time series prediction. In 2018 IEEE Transportation Electrification Conference and Expo (ITEC), 564- 569. IEEE.
  • 38. Zhan, Y., & Mechefske, C. K. (2007). Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov–Smirnov test statistic—Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis. Mechanical Systems and Signal Processing, 21(5), 1953-1982.
  • 39. Zhan, Y., Mechefske, C.K., 2007. Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov–Smirnov test statistic—Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis. Mechanical Systems and Signal Processing, 21(5), 1953-1982.
  • 40. Cheng, C., Yu, L., Chen, L.J., 2012. Structural nonlinear damage detection based on ARMA-GARCH model. Applied Mechanics and Materials, 204, 2891-2896.
  • 41. Zhang, D., Bailey, A.D., Djurdjanovic, D., 2016. Bayesian identification of hidden Markov models and their use for condition-based monitoring. IEEE Transactions on Reliability, 65(3), 1471-1482.
  • 42. Pourbabaee, B., Meskin, N., Khorasani, K., 2013. Multiple-model based sensor fault diagnosis using hybrid Kalman filter approach for nonlinear gas turbine engines. In 2013 American Control Conference, 4717-4723. IEEE.
  • 43. Li, G., Wang, X., Yang, A., Rong, M., Yang, K., 2017. Failure prognosis of high voltage circuit breakers with temporal latent Dirichlet allocation. Energies, 10(11), 1913.
  • 44. Dababneh, A., Ozbolat, I.T., 2015. Predictive reliability and lifetime methodologies for circuit boards. Journal of Manufacturing Systems, 37, 141-148.
  • 45. Tang, D., Sheng, W., Yu, J., 2018. Dynamic condition-based maintenance policy for degrading systems described by a random-coefficient autoregressive model: A comparative study. Eksploatacja i Niezawodność, 20(4), 590-601.
  • 46. Li, Y., Liu, S., Shu, L., 2019. Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data. Renewable Energy, 134, 357-366.
  • 47. Aye, S.A., Heyns, P.S., 2017. An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mechanical Systems and Signal Processing, 84, 485-498.
  • 48. Hu, Y.W., Zhang, H.C., Liu, S.J., Lu, H.T., 2018. Sequential Monte Carlo method toward online RUL assessment with applications. Chinese Journal of Mechanical Engineering, 31(1), 1-12.
  • 49. Wu, Z., Luo, H., Yang, Y., Lv, P., Zhu, X., Ji, Y., Wu, B., 2018. K-PdM: KPI-oriented machinery deterioration estimation framework for predictive maintenance using cluster-based hidden Markov model. IEEE Access, 6, 41676-41687.
  • 50. Kobayashi, K., Kaito, K., Lethanh, N., 2012. A statistical deterioration forecasting method using hidden Markov model for infrastructure management. Transportation Research Part B: Methodological, 46(4), 544-561.
  • 51. Zhou, Z.J., Hu, C.H., Xu, D.L., Chen, M.Y., Zhou, D.H., 2010. A model for real-time failure prognosis based on hidden Markov model and belief rule base. European Journal of Operational Research, 207(1), 269-283.
  • 52. Javed, K., Gouriveau, R., Zerhouni, N., 2017. State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels. Mechanical Systems and Signal Processing, 94, 214-236.
  • 53. Russell, S.J., Norvig, P., 2010. Artificial intelligence a modern approach. London.
  • 54. Singh, K., Malik, H., Sharma, R., 2017. Condition monitoring of wind turbine gearbox using electrical signatures. In 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), 1-6. IEEE. 55. Gajewski, J., Vališ, D., 2017. The determination of combustion engine condition and reliability using oil analysis by MLP and RBF neural networks. Tribology International, 115, 557-572.
  • 56. Ayo-Imoru, R.M., Cilliers, A.C., 2018. Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant. Annals of Nuclear Energy, 118, 61-70.
  • 57. Luwei, K. C., Yunusa-Kaltungo, A., Sha’aban, Y.A., 2018. Integrated fault detection framework for classifying rotating machine faults using frequency domain data fusion and artificial neural networks. Machines, 6(4), 59.
  • 58. Koprinkova-Hristova, P., 2013. Reinforcement learning for predictive maintenance of industrial plants. Inf. Technol. Control, 11(1), 21-28.
  • 59. Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., Wang, J., 2017. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Transactions on Industrial Electronics, 65(2), 1539-1548.
  • 60. Dong, D., Li, X.Y., Sun, F.Q., 2017. Life prediction of jet engines based on LSTM-recurrent neural networks. In 2017 Prognostics and system health management conference (PHM-Harbin), 1-6. IEEE.
  • 61. Hinchi, A.Z., Tkiouat, M., 2018. Rolling element bearing remaining useful life estimation based on a convolutional long-short-term memory network. Procedia Computer Science, 127, 123-132.
  • 62. Zhang, J., Wang, P., Yan, R., Gao, R.X., 2018. Long short-term memory for machine remaining life prediction. Journal of Manufacturing Systems, 48, 78-86.
  • 63. Li, X., Ding, Q., Sun, J.Q., 2018. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliability Engineering & System Safety, 172, 1-11.
  • 64. Ren, L., Sun, Y., Cui, J., Zhang, L., 2018. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. Journal of Manufacturing Systems, 48, 71-77.
  • 65. Huang, W., Cheng, J., Yang, Y., Guo, G., 2019. An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis. Neurocomputing, 359, 77-92.
  • 66. Chen, Z., Gryllias, K., Li, W., 2019. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine. Mechanical Systems and Signal Processing, 133, 106272.
  • 67. Jin, W., Shi, Z., Siegel, D., Dersin, P., Douziech, C., Pugnaloni, M., Lee, J., 2015. Development and evaluation of health monitoring techniques for railway point machines. In 2015 IEEE Conference on Prognostics and Health Management (PHM), 1-11. IEEE.
  • 68. Von Birgelen, A., Buratti, D., Mager, J., Niggemann, O., 2018. Self-organizing maps for anomaly localization and predictive maintenance in cyber-physical production systems. Procedia Cirp, 72, 480-485.
  • 69. Lu, F., Wu, J., Huang, J., Qiu, X., 2019. Aircraft engine degradation prognostics based on logistic regression and novel OS-ELM algorithm. Aerospace Science and Technology, 84, 661-671.
  • 70. Sankararaman, S., Daigle, M.J., Goebel, K., 2014. Uncertainty quantification in remaining useful life prediction using first-order reliability methods. IEEE Transactions on Reliability, 63(2), 603-619.
  • 71. Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., Zerhouni, N., 2017. Prognostics and health management for maintenance practitioners-Review, implementation and tools evaluation. International Journal of Prognostics and Health Management, 8(3), 1-31.
  • 72. Leksir, Y.L., Mansour, M., Moussaoui, A., 2018. Localization of thermal anomalies in electrical equipment using infrared thermography and support vector machine. Infrared Physics & Technology, 89, 120-128.
  • 73. Duan, C., Deng, C., Li, N., 2019. Reliability assessment for CNC equipment based on degradation data. The International Journal of Advanced Manufacturing Technology, 100, 421-434.
  • 74. Zhao, Y., Wang, S., Xiao, F., 2013. Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD). Applied Energy, 112, 1041-1048.
  • 75. Xiao, Y., Wang, H., Xu, W., Zhou, J., 2016. Robust one-class SVM for fault detection. Chemometrics and Intelligent Laboratory Systems, 151, 15-25.
  • 76. Jimenez, J.J.M., Schwartz, S., Vingerhoeds, R., Grabot, B., Salaün, M., 2020. Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics. Journal of Manufacturing Systems, 56, 539-557.
  • 77. Hong, J., Miao, X., Han, L., Ma, Y., 2009. Prognostics model for predicting aero-engine bearing grade-life. In Turbo Expo: Power for Land, Sea, and Air, 48821, 639-647.
  • 78. Orsagh, R.F., Sheldon, J., Klenke, C.J., 2003. Prognostics/diagnostics for gas turbine engine bearings. Engineering, 36843, 159-167.
  • 79. Soualhi, A., Razik, H., Guy, C., Doan, D.D., 2003. Prognosis of bearing failures using hidden Markov models and the adaptive neuro-fuzzy inference system. IEEE Transactions on Industrial Electronics 61(6), 2864- 2874.
  • 80. Liao, W., Li, D., 2015. An improved prediction model for equipment performance degradation based on Fuzzy-Markov Chain. 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 6-10. IEEE.
  • 81. Chiachío, J., Chiachío, M., Prescott, D., Andrews, J., 2019. A knowledge-based prognostics framework for railway track geometry degradation. Reliability Engineering & System Safety, 181(2019), 127-141.
  • 82. Björck, Å., 1990. Least squares methods. Handbook of Numerical Analysis, 1, 465-652.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Multimodal Analiz ve Sentez
Bölüm Makaleler
Yazarlar

Uğur Yıldırım 0000-0003-1131-8893

Shahin Mammadov Bu kişi benim 0000-0002-3112-2188

Hüseyin Afşer 0000-0002-6302-4558

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 8 Temmuz 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Yıldırım, U., Mammadov, S., & Afşer, H. (2024). Multi-Model Predictive Maintenance: Overview and A Linear System Perspective. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 1039-1052. https://doi.org/10.21605/cukurovaumfd.1606126