Araştırma Makalesi
BibTex RIS Kaynak Göster

Afşin-Elbistan Termik Santrali (Kahramanmaraş) Çevresinin Yüzey Sularının Hidrojeokimyasal Özelliklerinin İncelenmesi

Yıl 2024, Cilt: 39 Sayı: 4, 1113 - 1127, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606454

Öz

Bu çalışma, Akdeniz bölgesinin kuzeydoğusunda yer alan Kahramanmaraş iline bağlı Afşin-Elbistan çevresindeki yüzey sularının kalitesi ve iz element kirlilik derecelerinin belirlenmesi amacıyla yapılmıştır. Bölgedeki yüzey suyu kalitesi, Temmuz 2022’de farklı noktalardan alınan 11 su örneği kullanılarak değerlendirilmiştir. Yerinde yapılan sıcaklık (T), pH, elektriksel iletkenlik (Eİ), toplam çözünmüş madde (TÇM) ölçümleri ile birlikte, kalsiyum (Ca+2), magnezyum (Mg+2), sodyum (Na+), potasyum (K+), bikarbonat (HCO3-), sülfat (SO4-2), klorür (Cl−) ve nitrat (NO3−), fosfat (PO4-3) ve kükürt (S) olmak üzere 14 fiziksel ve jeokimyasal parametre; spektrofotometre, iyon kromatografisi ve titrasyon yöntemleri kullanılarak ölçülmüştür. İz element derişimlerinin belirlenmesi kapsamında alüminyum (Al), baryum (Ba), demir (Fe), manganez (Mn), nikel (Ni), krom (Cr), civa (Hg) ve titanyum (Ti) gibi iz elementler, İndüktif Olarak Eşleşmiş Plazma Optik Emisyon Spektrometresi (ICP–OES) kullanılarak analiz edilmiştir. Yapılan su analizleri sonucunda saptanan Al, Fe, Cu, Ba, Mn, Cr, Hg ve Ti gibi elementlere ait yüksek değerlerin, çalışma alanının litolojik özellikleri, tarımsal faaliyetlerin etkisi, yerleşim yerlerinin yakınlığı ve Afşin-Elbistan termik santralinin etkisinden kaynaklandığı düşünülmektedir. Dolayısıyla, çalışma alanındaki yüzey sularında Al, Fe, Cu, Ba, Zn, Mn, Cr, Hg ve Ti kirliliği mevcut olduğundan bu yüzey sularının içilmesinin bölge halkı için sağlık riskleri oluşturma olasılığı mevcuttur.

Kaynakça

  • 1. Aghazadeh, N., Moghaddam, A.A., 2011. Investigation of hydrochemical characteristics of groundwater inthe Harzandat aquifer, Northwest of Iran. Environmental Monitoring and Assessment, 176, 183-195.
  • 2. Famiglietti, J.S., 2014. Groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged. Nature Climate Change, 4, 945-948.
  • 3. Gleeson, T., Wada, Y., Bierkens, M.F., Van Beek, L.P., 2012. Water balance of global aquifers revealed by groundwater footprint. Nature, 488, 197-200.
  • 4. UNICEF Strategic Plan (Annual Results Report), 2017. www.unicef.org/publicpartnerships/66662 _66851.html, unicef.org>. Erişim tarihi: 12.12.2020, Ankara.
  • 5. Singh, K.P., Malik, A., Sinha, S., 2005. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques- a case study. Analytica Chimica Acta, 538(1-2), 355-374.
  • 6. Wang, Z., Su, Q., Wang, S., Gao, Z., Liu, J., 2021. Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern china coastal zone. Environmental Pollution, 290, 118016.
  • 7. Rizwan, U., Riffat, N.M., Quadir, A., 2009. Assessment of groundwater contamination in an ındustrial city, Sialkot, Pakistan. African Journal of Environmental Science and Technology, 3, 429-446.
  • 8. Chowdhury, S., Jafar Mazunder, M.A., Al-Attas, O., Husain, T., 2016. Heavy metals in drinking water: Occurrences, implications and future needs in developing countries. Science of the Total Environment, 569- 570, 476-488.
  • 9. Momodu, M.A., Anyakora, C.A., 2010. Heavy metal contamination of ground water: The Surulere Case study. Research Journal Environmental and Earth Sciences, 2, 39-43.
  • 10. Adepoju-Bello, A.A., Ojomolade, O.O., Ayoola, G.A., Coker, H.A.B., 2009. Quantitative analysis of some toxic metals in domestic water obtained from Lagos metropolis. The Nigeria Journal of Pharmacy, 42(1), 57- 60.
  • 11. Adepoju-Bello, A.A., Alabi, O.M., 2005. Heavy metals: A review. The Nigeria Journal of Pharmacy, 37, 41-45.
  • 12. Khoshnam, S.E., William, W., Maryam, F., Yaghoob, F., Hadi, F.M., 2017. Pathogenic mechanisms following ischemic stroke. Neurological Sciences, 38(7), 1167-1186.
  • 13. Karmakar, B., Singh, M.K., Choudhary, B.K., Singh, S.K., Egbueri, J.C., Gautam, S.K., Rawat, K.S., 2021. Investigation of the hydrogeochemistry, groundwater quality, and associated health risks in industrialized regions of Tripura, northeast India. Environmental Forensics, 24(5-6), 285-306.
  • 14. Maliqi, E., Jusufi, K., Singh, S.K., 2020. Assessment and spatial mapping of groundwater parameters using metal pollution indices, graphical methods, and geoinformatics, with analytical chemistry letters. Analytical Chemistry Letters, 10(2),152-180.
  • 15. MTA Genel Müdürlüğü, 2009. Malatya-Elbistan dolayının tektono-stratigrafik özellikleri. Rapor no, 11150, Ankara
  • 16. Özgül, N., 1976. Toroslar’ın bazı temel jeoloji özellikleri. Türkiye Jeoloji Kurumu Bülteni, 19, 65-78.
  • 17. MTA Genel Müdürlüğü, 2002. 1:100.000 ölçekli, L37 ve L38 paftası jeoloji haritası. Jeoloji Etütleri Dairesi, Ankara.
  • 18. Şahinci, A., 1991. Doğal suların jeokimyası (1. Baskı). Türkiye, Reform Matbaası, İzmir.
  • 19. Schoeller, H., 1955. Geochemie des eaux souterraines. Revue De L’institute Francois Du Petrole, 10, 230-44
  • 20. Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water U.S. U.S Geologıcal Survey Water-Supply Paper, 2254.
  • 21. Piper, A.M., 1944. A graphic procedure in the geochemical ınterpretation of water-analyses. Transactions of American Geophysical Union, 25, 914-923.
  • 22. ITHASY, 2005. İnsani tüketim amaçlı sular hakkında yönetmelik. Resmî Gazete, 17.02.2005 No. 25730, Ankara.
  • 23. World Health Organization (WHO), 2022. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. https://www.who.int/publications/i/item/9789240045064. Erişim tarihi: 30.10.2022, Adana.

Investigation of Hydrogeochemical Characteristics of Surface Waters Around Afşin-Elbistan Thermal Power Plant (Kahramanmaraş)

Yıl 2024, Cilt: 39 Sayı: 4, 1113 - 1127, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606454

Öz

This study was conducted to determine the quality of surface waters and the degree of trace element pollution in the Afşin-Elbistan region, located in the northeastern part of the Mediterranean region, within the province of Kahramanmaraş. In addition to in situ measurements of temperature (T), pH, electrical conductivity (EC), total dissolved solids (TDS), 14 physical and geochemical parameters including calcium (Ca+2), magnesium (Mg+2), sodium (Na+), potassium (K+), bicarbonate (HCO3-), sulfate (SO4-2), chloride (Cl-) and nitrate (NO3-), phosphate (PO4-3) and sulfur (S) were measured using spectrophotometer, ion chromatography, and titration methods. Trace elements such as aluminum (Al), barium (Ba), iron (Fe), manganese (Mn), nickel (Ni), chromium (Cr), mercury (Hg), and titanium (Ti) were analyzed using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to determine their concentrations. The high levels of elements such as Al, Fe, Cu, Ba, Mn, Cr, Hg, and Ti detected in the water analyses are thought to be due to the lithological characteristics of the study area, the influence of agricultural activities, the proximity of settlements, and the impact of the Afşin-Elbistan thermal power plant. Therefore, since pollution of Al, Fe, Cu, Ba, Zn, Mn, Cr, Hg, and Ti is present in the surface waters of the study area, there is a potential risk of health hazards for the local population if these surface waters are consumed.

Kaynakça

  • 1. Aghazadeh, N., Moghaddam, A.A., 2011. Investigation of hydrochemical characteristics of groundwater inthe Harzandat aquifer, Northwest of Iran. Environmental Monitoring and Assessment, 176, 183-195.
  • 2. Famiglietti, J.S., 2014. Groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged. Nature Climate Change, 4, 945-948.
  • 3. Gleeson, T., Wada, Y., Bierkens, M.F., Van Beek, L.P., 2012. Water balance of global aquifers revealed by groundwater footprint. Nature, 488, 197-200.
  • 4. UNICEF Strategic Plan (Annual Results Report), 2017. www.unicef.org/publicpartnerships/66662 _66851.html, unicef.org>. Erişim tarihi: 12.12.2020, Ankara.
  • 5. Singh, K.P., Malik, A., Sinha, S., 2005. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques- a case study. Analytica Chimica Acta, 538(1-2), 355-374.
  • 6. Wang, Z., Su, Q., Wang, S., Gao, Z., Liu, J., 2021. Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern china coastal zone. Environmental Pollution, 290, 118016.
  • 7. Rizwan, U., Riffat, N.M., Quadir, A., 2009. Assessment of groundwater contamination in an ındustrial city, Sialkot, Pakistan. African Journal of Environmental Science and Technology, 3, 429-446.
  • 8. Chowdhury, S., Jafar Mazunder, M.A., Al-Attas, O., Husain, T., 2016. Heavy metals in drinking water: Occurrences, implications and future needs in developing countries. Science of the Total Environment, 569- 570, 476-488.
  • 9. Momodu, M.A., Anyakora, C.A., 2010. Heavy metal contamination of ground water: The Surulere Case study. Research Journal Environmental and Earth Sciences, 2, 39-43.
  • 10. Adepoju-Bello, A.A., Ojomolade, O.O., Ayoola, G.A., Coker, H.A.B., 2009. Quantitative analysis of some toxic metals in domestic water obtained from Lagos metropolis. The Nigeria Journal of Pharmacy, 42(1), 57- 60.
  • 11. Adepoju-Bello, A.A., Alabi, O.M., 2005. Heavy metals: A review. The Nigeria Journal of Pharmacy, 37, 41-45.
  • 12. Khoshnam, S.E., William, W., Maryam, F., Yaghoob, F., Hadi, F.M., 2017. Pathogenic mechanisms following ischemic stroke. Neurological Sciences, 38(7), 1167-1186.
  • 13. Karmakar, B., Singh, M.K., Choudhary, B.K., Singh, S.K., Egbueri, J.C., Gautam, S.K., Rawat, K.S., 2021. Investigation of the hydrogeochemistry, groundwater quality, and associated health risks in industrialized regions of Tripura, northeast India. Environmental Forensics, 24(5-6), 285-306.
  • 14. Maliqi, E., Jusufi, K., Singh, S.K., 2020. Assessment and spatial mapping of groundwater parameters using metal pollution indices, graphical methods, and geoinformatics, with analytical chemistry letters. Analytical Chemistry Letters, 10(2),152-180.
  • 15. MTA Genel Müdürlüğü, 2009. Malatya-Elbistan dolayının tektono-stratigrafik özellikleri. Rapor no, 11150, Ankara
  • 16. Özgül, N., 1976. Toroslar’ın bazı temel jeoloji özellikleri. Türkiye Jeoloji Kurumu Bülteni, 19, 65-78.
  • 17. MTA Genel Müdürlüğü, 2002. 1:100.000 ölçekli, L37 ve L38 paftası jeoloji haritası. Jeoloji Etütleri Dairesi, Ankara.
  • 18. Şahinci, A., 1991. Doğal suların jeokimyası (1. Baskı). Türkiye, Reform Matbaası, İzmir.
  • 19. Schoeller, H., 1955. Geochemie des eaux souterraines. Revue De L’institute Francois Du Petrole, 10, 230-44
  • 20. Hem, J.D., 1985. Study and interpretation of the chemical characteristics of natural water U.S. U.S Geologıcal Survey Water-Supply Paper, 2254.
  • 21. Piper, A.M., 1944. A graphic procedure in the geochemical ınterpretation of water-analyses. Transactions of American Geophysical Union, 25, 914-923.
  • 22. ITHASY, 2005. İnsani tüketim amaçlı sular hakkında yönetmelik. Resmî Gazete, 17.02.2005 No. 25730, Ankara.
  • 23. World Health Organization (WHO), 2022. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. https://www.who.int/publications/i/item/9789240045064. Erişim tarihi: 30.10.2022, Adana.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hidrojeoloji
Bölüm Makaleler
Yazarlar

Veli Keskin Bu kişi benim 0000-0003-2769-5044

Sedat Türkmen 0000-0002-9867-5545

Ahmet Özbek 0000-0002-6326-4324

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 14 Haziran 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Keskin, V., Türkmen, S., & Özbek, A. (2024). Afşin-Elbistan Termik Santrali (Kahramanmaraş) Çevresinin Yüzey Sularının Hidrojeokimyasal Özelliklerinin İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 1113-1127. https://doi.org/10.21605/cukurovaumfd.1606454