Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Araçlarda Kullanılan Batarya Şarj Uygulamaları için Genetik Algoritma ile Geliştirilmiş Bir Rezonans Dönüştürücü Tasarımı

Yıl 2024, Cilt: 39 Sayı: 4, 1129 - 1142, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606465

Öz

Bu makale, genetik algoritma kullanarak LLC rezonans dönüştürücülerin optimizasyonu üzerine kapsamlı bir çalışmayı sunmaktadır. Lr, Lm ve Cr rezonans parametrelerinin hassas bir şekilde ayarlanması yüksek güç dönüşüm verimliliği elde etmek için hayati önem taşırken, LLC rezonans dönüştürücülerin etkinliği de büyük ölçüde bu sürece bağlıdır. Dönüştürücünün karmaşık ve doğrusal olmayan işleyişi nedeniyle, geleneksel tasarım teknikleri bu parametreleri optimize etmekte sıklıkla başarısız olur. Bu çalışmada bu zorluğun üstesinden gelmek için, dönüştürücünün etkinliğini en üst düzeye çıkaran ideal çözümlerin arayışında parametre uzayını akıllıca araştıran genetik algoritmalar temelli bir optimizasyon stratejisi uygulanmıştır. Süreç, optimizasyon sorununun formülasyonunu, genetik algoritmanın uygulanmasını ve benzetim sonuçlarının incelenmesini içermektedir. Benzetim sonuçları göstermiştir ki toplamda bu adımlar, optimize edilmiş tasarımların geleneksel seçeneklerden daha üstün olduğunu göstermektedir. Benzetim sonuçlarına göre, sistem verimliliği %96,8 olarak elde edilmiştir. Sonuçlar, genetik algoritmaların LLC rezonans dönüştürücü performansını büyük ölçüde iyileştirebileceğini ve güç elektroniği tasarımcıları için güçlü araçlar sağladığını göstermektedir. Bu araştırmanın, güvenilir ve etkili güç dönüşümü gerektiren çeşitli endüstri uygulamalarında kullanım bulabilecek daha dayanıklı ve verimli güç sistemlerinin oluşturulması için etkileri vardır.

Kaynakça

  • 1. Ding, X., Wang, Z., Zhang L., Wang, C., 2020. Longitudinal vehicle speed estimation for four wheel-independently-actuated electric vehicles based on multi-sensor fusion. IEEE Transactions on Vehicular Technology, 69(11), 12797-12806.
  • 2. Wang, B., Dehghanian, P., Wang, S., Mitolo, M., 2019. Electrical safety considerations in large-scale electric vehicle charging stations. IEEE Transactions on Industry Applications, 55(6), 6603-6612.
  • 3. Habib, S., Khan, M., Abbas, F., Saqib, M., Saleem, A., 2020. Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE Journal of Power and Energy Systems, 6(4), 911- 929.
  • 4. Yilmaz, M., Philip, T.K., 2013. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Transactions on Power Electronics, 28(5), 2151-2169.
  • 5. Kim J.S., Choe G.Y., Jung H.M., Lee, B.K., Cho, Y.J., Han K.B., 2010. Design and implementation of a high-efficiency onboard battery charger for electric vehicles with frequency control strategy. IEEE Vehicle Power and Propulsion Conference, 1-6.
  • 6. Hannan M.A., Hoque, M.M., Hussain, A., Yusof, Y., Ker, P.J., 2018. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations. IEEE Access, 6, 19362-19378.
  • 7. Wu, J., Zhang, C., Chen, Z., 2016. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl. Energy, 173, 134-140.
  • 8. Sack, T.T., Tice J.C., Reynolds R., 2001. Segmented battery charger for high energy 28 V lithium-ion battery. Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533), Long Beach, CA, USA, 157-159.
  • 9. Farah, F., Alaoui, M.E., El Khadiri, K., Qjidaa, H., 2018. New analog li-ion battery charger using pulsed charging method. 6th International Conference on Multimedia Computing and Systems (ICMCS), Rabat, 1-4.
  • 10. Guo, Z., Huang, S., Tsai, T., 2019. A current-mode control li-ion battery charger with trickle-current mode and built-in aging detection. IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, 1- 4.
  • 11. Tseng, S.-., Shih, T.-., Fan, S.-., Chang, G.-., 2009. Design and implementation of lithium-ion/lithium-polymer battery charger with impedance compensation. International Conference on Power Electronics and Drive Systems (PEDS), Taipei, 866-870.
  • 12. Musavi, F., Cracium, M., Gautam, D.S., Eberle, W., Dunford, W.G., 2013. An LLC resonant DC-DC converter for wide output voltage range battery charging applications. IEEE Transactions on Power Electronics, 28(12), 5437-5445.
  • 13. Gu, B., Lin, C.-Y., Chen, B.-F., Dominic, J., Lai, J.-S. (Jason), 2013. Zero-voltage-switching PWM resonant full-bridge converter with minimized circulating losses and minimal voltage stresses of bridge rectifiers for electric vehicle battery chargers. IEEE Transactions on Power Electronics 28(10), 4657-4667.
  • 14. Deng, J., Li, S., Hu, S., Mi, C. C., Ma, R., 2014. Design methodology of LLC resonant converters for electric vehicle battery chargers. IEEE Transactions on Vehicular Technology, 63(4).
  • 15. Karimi, S., Tahami, F., 2019. A comprehensive time-domain-based optimization of a high-frequency LLC-based li-ion battery charger. 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, 415-420.
  • 16. Cho, I.-H., Kim, Y.-D., Moon, G.-W., 2014. A half-bridge LLC resonant converter adopting boost PWM control scheme for hold-up state operation. IEEE Transactions on Power Electronics 29(2), 841-850.
  • 17. Hu, S., Deng, J., Mi, C., Zhang, M., 2013. LLC resonant converters for PHEV battery chargers. Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 3051-3054.
  • 18. Li, Y., Shao, S., Chen, H., Zhang, J., Sheng, K., 2020. High-gain high-efficiency IPOS LLC converter with coupled transformer and current sharing capability. CPSS Transactions on Power Electronics and Applications, 5(1), 63-73.
  • 19. Zeng, J., Zhang, G., Yu, S.S., Zhang, B., Zhang, Y., 2020. LLC resonant converter topologies and industrial applications - A review. Chinese Journal of Electrical Engineering 6(3), 73-84.
  • 20. Deng, J., Li, S., Hu, S., Mi, C.C., Ma, R., 2014. Design methodology of LLC resonant converters for electric vehicle battery chargers. IEEE Transactions on Vehicular Technology, 63(4), 1581-1592.
  • 21. Beiranvand, R., Rashidian, B., Zolghadri, M.R., Mohammad, S., 2012. A design procedure for optimizing the LLC resonant converter as a wide output range voltage source. IEEE Transactions on Power Electronics, 27(8), 3749-3763.
  • 22. Hu, H., Fang, X., Chen, F., Shen, Z.J., Batarseh, I., 2013. A modified high-efficiency LLC converter with two transformers for wide input-voltage range applications. IEEE Transactions on Power Electronics, 28(4), 1946-1960.
  • 23. Lee, I.-O., Moon, G.-W., 2012. Analysis and design of a three-level LLC series resonant converter for high and wide input voltage applications. IEEE Transactions on Power Electronics, 27(6), 2966-2979.
  • 24. Lee, J.Y., Chae, H.J., 2014. 6.6-kW onboard charger design using DCM PFC converter with harmonic modulation technique and two-stage DC/DC converter. IEEE Transactions on Industrial Electronics 61(3), 1243-1252.
  • 25. Gu, D.J., Zhang, Z., Wu, Y., Wang, D., Gui, H., Wang, L., 2016. High-efficiency LLC DCX battery chargers with sinusoidal power decoupling control. IEEE Energy Conversion Congress and Exposition (ECCE), 1-7.
  • 26. Haga, H., Kurokawa, F., 2017. Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles. IEEE Transactions on Power Electronics 32(4), 2498-2507.
  • 27. Han, H.G., Choi, Y.J., Choi, S.Y., Kim, R.Y., 2016. A high efficiency LLC resonant converter with wide ranged output voltage using adaptive turn ratio scheme for a Li-ion battery charger. IEEE Vehicle Power and Propulsion Conference (VPPC), 1-6.
  • 28. Kim, J.-W., Moon, G.-W., 2014. A new LLC series resonant converter with a narrow switching frequency variation and reduced conduction losses. IEEE Transactions on Power Electronics 29(8), 4278-4287.
  • 29. Zhou, X., Sheng, B., Liu, W., Chen, Y., Yurek, A., Liu, Y.-F., Fellow, S.L., 2019. Analysis and design of SR driver circuit for LLC DC-DC converter under high load current application. IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 1375-1381.
  • 30. Wang, D., Liu, Y.-F., 2014. A zero-crossing noise filter for driving synchronous rectifiers of LLC resonant converter. IEEE Transactions on Power Electronics 29(4), 1953-1965.
  • 31. Murata, K., Kurokawa, F., 2012. Digitally controlled LLC resonant converter using modified FIR filter. 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, 1-4.
  • 32. Wang, F., McDonald, B.A., Langham, J., Fan, B., 2016. A novel adaptive synchronous rectification method for digitally controlled LLC converters. IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 334-338.
  • 33. Cheng, Y., Chen, J., Liu, Y., Huang, K., Yang, Z., 2013. Design of a digitally controlled LLC resonant converter with synchronous rectification. 1st International Future Energy Electronics Conference (IFEEC), Tainan, 772-776.
  • 34. Yu, R., Ho, G.K.Y., Pong, B.M.H., Ling, B.W.-K., Lam, J., 2012. Computer-aided design and optimization of high-efficiency LLC series resonant converter. IEEE Transactions on Power Electronics 27(7), 3243-3251.
  • 35. Fang, X., Hu, H., Chen, F., Somani, U., Auadisian, E., Shen, J., Batarseh, I., 2013. Efficiency-oriented optimal design of the LLC resonant converter based on peak gain placement. IEEE Transactions on Power Electronics 28(5), 2285-2296.
  • 36. Xu, H., Yin, Z., Zhao, Y., Huang, Y., 2017. Accurate design of high-efficiency LLC resonant converter with wide output voltage. IEEE Access 5, 26653-26665.
  • 37. Beiranvand, R., Rashidian, B., Zolghadri, M.R., Alavi, S.M.H., 2012. A design procedure for optimizing the LLC resonant converter as a wide output range voltage source. IEEE Transactions on Power Electronics 27(8), 3749-3763.
  • 38. Fang, Z., Cai, T., Duan, S., Chen, C., 2015. Optimal design methodology for LLC resonant converter in battery charging applications based on time-weighted average efficiency. IEEE Transactions on Power Electronics 30(10), 5469-5483.
  • 39. Zhang, X., Wei, X., Wu, X., Yu, X., 2018. Design of a digitally controlled full-bridge LLC resonant converter. Proc. National Conference on Electrical and Electronics (NCCE), 165.
  • 40. Wei, G., Hua, B., Szatmari-Voicu, G., Taylor, A., Patterson, J., Kane, J., 2012. A 10 kW 97% efficiency LLC resonant DC/DC converter with wide range of output voltage for the battery chargers in plug-in hybrid electric vehicles. Proc. IEEE ITEC Expo, 1-4.
  • 41. Musavi, F., Craciun, M., Gautam, D.S., Eberle, W., Dunford, W.G., 2013. An LLC resonant DC–DC converter for wide output voltage range battery charging applications. IEEE Transactions on Power Electronics 28(12), 5437-5445.

Genetic Algorithm Enhanced Resonant Converter Design for Battery Charging Applications in Electric Vehicles

Yıl 2024, Cilt: 39 Sayı: 4, 1129 - 1142, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606465

Öz

This paper presents a comprehensive study on the optimization of LLC resonant converters using genetic algorithm. Precise adjustment of Lr, Lm, and Cr resonant parameters is crucial for achieving high power conversion efficiency, while the effectiveness of LLC resonant converters is greatly dependent on this process. Due to the complex and nonlinear operation of the converter, traditional design techniques often fail to optimize these parameters. To overcome this challenge, an optimization strategy based on genetic algorithms, which intelligently explores the parameter space in search of ideal solutions maximizing the converter's efficiency, has been applied. The process involves formulating the optimization problem, implementing the genetic algorithm, and examining the simulation results. Overall, these steps demonstrate that optimized designs outperform traditional options. According to the simulation results, the system efficiency was achieved as 96.8%. The results indicate that genetic algorithms can significantly enhance the performance of LLC resonant converters and provide powerful tools for power electronics designers. The implications of this research extend to the creation of more durable and efficient power systems that can find applications in various industries requiring reliable and effective power conversion.

Kaynakça

  • 1. Ding, X., Wang, Z., Zhang L., Wang, C., 2020. Longitudinal vehicle speed estimation for four wheel-independently-actuated electric vehicles based on multi-sensor fusion. IEEE Transactions on Vehicular Technology, 69(11), 12797-12806.
  • 2. Wang, B., Dehghanian, P., Wang, S., Mitolo, M., 2019. Electrical safety considerations in large-scale electric vehicle charging stations. IEEE Transactions on Industry Applications, 55(6), 6603-6612.
  • 3. Habib, S., Khan, M., Abbas, F., Saqib, M., Saleem, A., 2020. Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE Journal of Power and Energy Systems, 6(4), 911- 929.
  • 4. Yilmaz, M., Philip, T.K., 2013. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Transactions on Power Electronics, 28(5), 2151-2169.
  • 5. Kim J.S., Choe G.Y., Jung H.M., Lee, B.K., Cho, Y.J., Han K.B., 2010. Design and implementation of a high-efficiency onboard battery charger for electric vehicles with frequency control strategy. IEEE Vehicle Power and Propulsion Conference, 1-6.
  • 6. Hannan M.A., Hoque, M.M., Hussain, A., Yusof, Y., Ker, P.J., 2018. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations. IEEE Access, 6, 19362-19378.
  • 7. Wu, J., Zhang, C., Chen, Z., 2016. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl. Energy, 173, 134-140.
  • 8. Sack, T.T., Tice J.C., Reynolds R., 2001. Segmented battery charger for high energy 28 V lithium-ion battery. Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533), Long Beach, CA, USA, 157-159.
  • 9. Farah, F., Alaoui, M.E., El Khadiri, K., Qjidaa, H., 2018. New analog li-ion battery charger using pulsed charging method. 6th International Conference on Multimedia Computing and Systems (ICMCS), Rabat, 1-4.
  • 10. Guo, Z., Huang, S., Tsai, T., 2019. A current-mode control li-ion battery charger with trickle-current mode and built-in aging detection. IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, 1- 4.
  • 11. Tseng, S.-., Shih, T.-., Fan, S.-., Chang, G.-., 2009. Design and implementation of lithium-ion/lithium-polymer battery charger with impedance compensation. International Conference on Power Electronics and Drive Systems (PEDS), Taipei, 866-870.
  • 12. Musavi, F., Cracium, M., Gautam, D.S., Eberle, W., Dunford, W.G., 2013. An LLC resonant DC-DC converter for wide output voltage range battery charging applications. IEEE Transactions on Power Electronics, 28(12), 5437-5445.
  • 13. Gu, B., Lin, C.-Y., Chen, B.-F., Dominic, J., Lai, J.-S. (Jason), 2013. Zero-voltage-switching PWM resonant full-bridge converter with minimized circulating losses and minimal voltage stresses of bridge rectifiers for electric vehicle battery chargers. IEEE Transactions on Power Electronics 28(10), 4657-4667.
  • 14. Deng, J., Li, S., Hu, S., Mi, C. C., Ma, R., 2014. Design methodology of LLC resonant converters for electric vehicle battery chargers. IEEE Transactions on Vehicular Technology, 63(4).
  • 15. Karimi, S., Tahami, F., 2019. A comprehensive time-domain-based optimization of a high-frequency LLC-based li-ion battery charger. 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Shiraz, 415-420.
  • 16. Cho, I.-H., Kim, Y.-D., Moon, G.-W., 2014. A half-bridge LLC resonant converter adopting boost PWM control scheme for hold-up state operation. IEEE Transactions on Power Electronics 29(2), 841-850.
  • 17. Hu, S., Deng, J., Mi, C., Zhang, M., 2013. LLC resonant converters for PHEV battery chargers. Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 3051-3054.
  • 18. Li, Y., Shao, S., Chen, H., Zhang, J., Sheng, K., 2020. High-gain high-efficiency IPOS LLC converter with coupled transformer and current sharing capability. CPSS Transactions on Power Electronics and Applications, 5(1), 63-73.
  • 19. Zeng, J., Zhang, G., Yu, S.S., Zhang, B., Zhang, Y., 2020. LLC resonant converter topologies and industrial applications - A review. Chinese Journal of Electrical Engineering 6(3), 73-84.
  • 20. Deng, J., Li, S., Hu, S., Mi, C.C., Ma, R., 2014. Design methodology of LLC resonant converters for electric vehicle battery chargers. IEEE Transactions on Vehicular Technology, 63(4), 1581-1592.
  • 21. Beiranvand, R., Rashidian, B., Zolghadri, M.R., Mohammad, S., 2012. A design procedure for optimizing the LLC resonant converter as a wide output range voltage source. IEEE Transactions on Power Electronics, 27(8), 3749-3763.
  • 22. Hu, H., Fang, X., Chen, F., Shen, Z.J., Batarseh, I., 2013. A modified high-efficiency LLC converter with two transformers for wide input-voltage range applications. IEEE Transactions on Power Electronics, 28(4), 1946-1960.
  • 23. Lee, I.-O., Moon, G.-W., 2012. Analysis and design of a three-level LLC series resonant converter for high and wide input voltage applications. IEEE Transactions on Power Electronics, 27(6), 2966-2979.
  • 24. Lee, J.Y., Chae, H.J., 2014. 6.6-kW onboard charger design using DCM PFC converter with harmonic modulation technique and two-stage DC/DC converter. IEEE Transactions on Industrial Electronics 61(3), 1243-1252.
  • 25. Gu, D.J., Zhang, Z., Wu, Y., Wang, D., Gui, H., Wang, L., 2016. High-efficiency LLC DCX battery chargers with sinusoidal power decoupling control. IEEE Energy Conversion Congress and Exposition (ECCE), 1-7.
  • 26. Haga, H., Kurokawa, F., 2017. Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles. IEEE Transactions on Power Electronics 32(4), 2498-2507.
  • 27. Han, H.G., Choi, Y.J., Choi, S.Y., Kim, R.Y., 2016. A high efficiency LLC resonant converter with wide ranged output voltage using adaptive turn ratio scheme for a Li-ion battery charger. IEEE Vehicle Power and Propulsion Conference (VPPC), 1-6.
  • 28. Kim, J.-W., Moon, G.-W., 2014. A new LLC series resonant converter with a narrow switching frequency variation and reduced conduction losses. IEEE Transactions on Power Electronics 29(8), 4278-4287.
  • 29. Zhou, X., Sheng, B., Liu, W., Chen, Y., Yurek, A., Liu, Y.-F., Fellow, S.L., 2019. Analysis and design of SR driver circuit for LLC DC-DC converter under high load current application. IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 1375-1381.
  • 30. Wang, D., Liu, Y.-F., 2014. A zero-crossing noise filter for driving synchronous rectifiers of LLC resonant converter. IEEE Transactions on Power Electronics 29(4), 1953-1965.
  • 31. Murata, K., Kurokawa, F., 2012. Digitally controlled LLC resonant converter using modified FIR filter. 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, 1-4.
  • 32. Wang, F., McDonald, B.A., Langham, J., Fan, B., 2016. A novel adaptive synchronous rectification method for digitally controlled LLC converters. IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 334-338.
  • 33. Cheng, Y., Chen, J., Liu, Y., Huang, K., Yang, Z., 2013. Design of a digitally controlled LLC resonant converter with synchronous rectification. 1st International Future Energy Electronics Conference (IFEEC), Tainan, 772-776.
  • 34. Yu, R., Ho, G.K.Y., Pong, B.M.H., Ling, B.W.-K., Lam, J., 2012. Computer-aided design and optimization of high-efficiency LLC series resonant converter. IEEE Transactions on Power Electronics 27(7), 3243-3251.
  • 35. Fang, X., Hu, H., Chen, F., Somani, U., Auadisian, E., Shen, J., Batarseh, I., 2013. Efficiency-oriented optimal design of the LLC resonant converter based on peak gain placement. IEEE Transactions on Power Electronics 28(5), 2285-2296.
  • 36. Xu, H., Yin, Z., Zhao, Y., Huang, Y., 2017. Accurate design of high-efficiency LLC resonant converter with wide output voltage. IEEE Access 5, 26653-26665.
  • 37. Beiranvand, R., Rashidian, B., Zolghadri, M.R., Alavi, S.M.H., 2012. A design procedure for optimizing the LLC resonant converter as a wide output range voltage source. IEEE Transactions on Power Electronics 27(8), 3749-3763.
  • 38. Fang, Z., Cai, T., Duan, S., Chen, C., 2015. Optimal design methodology for LLC resonant converter in battery charging applications based on time-weighted average efficiency. IEEE Transactions on Power Electronics 30(10), 5469-5483.
  • 39. Zhang, X., Wei, X., Wu, X., Yu, X., 2018. Design of a digitally controlled full-bridge LLC resonant converter. Proc. National Conference on Electrical and Electronics (NCCE), 165.
  • 40. Wei, G., Hua, B., Szatmari-Voicu, G., Taylor, A., Patterson, J., Kane, J., 2012. A 10 kW 97% efficiency LLC resonant DC/DC converter with wide range of output voltage for the battery chargers in plug-in hybrid electric vehicles. Proc. IEEE ITEC Expo, 1-4.
  • 41. Musavi, F., Craciun, M., Gautam, D.S., Eberle, W., Dunford, W.G., 2013. An LLC resonant DC–DC converter for wide output voltage range battery charging applications. IEEE Transactions on Power Electronics 28(12), 5437-5445.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka (Diğer), Elektrik Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Birand Erdoğan 0000-0003-0784-7776

Adnan Tan 0000-0002-5227-2556

Mehmet Tümay 0000-0002-6055-3761

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 18 Nisan 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Erdoğan, B., Tan, A., & Tümay, M. (2024). Elektrikli Araçlarda Kullanılan Batarya Şarj Uygulamaları için Genetik Algoritma ile Geliştirilmiş Bir Rezonans Dönüştürücü Tasarımı. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 1129-1142. https://doi.org/10.21605/cukurovaumfd.1606465