Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafit-Kalsiyum Aljinat Modifiyeli Fungal Biyokompozitlerin Tepki Yüzeyi Metodolojisi ile Cr(VI) Giderim Optimizasyonu

Yıl 2024, Cilt: 39 Sayı: 4, 1143 - 1150, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606470

Öz

Endüstriyel faaliyetler sonucu oluşan atıklarda yüksek konsantrasyonlarda bulunabilen Cr(VI) gibi ağır metaller, doğru yönetilmediği takdirde çevre ve insan sağlığı açısından ciddi bir tehdit oluşturmaktadır. Dolayısıyla bu çalışmada, Penicillium roqueforti mantar misellerinin grafit ve kalsiyum aljinat ile modifiye edilerek biyokompozit sentezlenmesi ve bu biyokompozitin Cr(VI) giderim performansının incelenmesi amaçlanmıştır. Biyokompozitlerin adsorpsiyon kapasiteleri, ekonomik ve çevresel sürdürülebilirlik açısından büyük önem taşımaktadır. Sentezlenen biyokompozitin Cr(VI) giderim performansı, Box-Behnken istatistiksel modeli kullanılarak optimize edilmiştir. Optimizasyon sürecinde, grafit konsantrasyonu, adsorpsiyon süresi ve başlangıç Cr(VI) konsantrasyonu gibi bağımsız değişkenlerin etkileri araştırılmıştır. Yapılan deneyler sonucunda, en yüksek giderim veriminin grafit konsantrasyonu 0,1 g/L, adsorpsiyon süresi 11 saat ve Cr(VI) konsantrasyonu 30 mg/L koşullarında elde edildiği belirlenmiştir. Bu koşullar altında %93,3 oranında Cr(VI) giderimi sağlanmıştır. Biyokompozitin yüksek giderim verimliliği, düşük maliyeti ve çevre dostu olması, bu materyalin endüstriyel atık su arıtımında kullanım potansiyelini ortaya koymaktadır. Ayrıca, bu çalışma biyosorpsiyon yönteminin, geleneksel ağır metal giderim yöntemlerine kıyasla, kimyasal katkı maddesi kullanımının azlığı, operasyonel kolaylık ve yeniden kullanılabilirlik gibi avantajlarını da vurgulamaktadır. Elde edilen sonuçlar, gelecekteki çalışmalara yön verebilecek nitelikte olup, çevre mühendisliği ve atık su yönetimi alanlarında önemli katkılar sunmaktadır.

Kaynakça

  • 1. Kumar, R., Barakat, M.A., Al-Mur, B.A., Alseroury, F.A., Eniola, J.O., 2020. Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite. Journal of Cleaner Production, 246, 119076.
  • 2. Liang, S., Cai, W., Dang, C., Peng, X., Luo, Z., Wei, X., 2023. Synthesis of sodium alginate/phosphorus tetramethylmethyl sulfate biocomposite beads with exceptional adsorption rate for Cr(VI) removal. Journal of Environmental Chemical Engineering, 11(2), 109317.
  • 3. Staroń, P., Kuciakowski, J., Chwastowski, J., 2023. Biocomposite of hydrochar and Lindnera jadinii with magnetic properties for adsorptive removal of cadmium ions. Journal of Environmental Chemical Engineering, 11(3), 110270.
  • 4. Zou, H., Zhao, J., He, F., Zhong, Z., Huang, J., Zheng, Y., Zhang, Y., Yang, Y., Yu, F., Bashir, M.A., Gao, B., 2021. Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 413, 125252.
  • 5. Dognani, G., Hadi, P., Ma, H., Cabrera, F.C., Job, A.E., Agostini, D.L.S., Hsiao, B.S., 2019. Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chemical Engineering Journal, 372, 341-351.
  • 6. Djellabi, R., Su, P., Elimian, E.A., Poliukhova, V., Nouacer, S., Abdelhafeez, I.A., Abderrahim, N., Aboagye, D., Andhalkar, V.V., Nabgan, W., Rtimi, S., 2022. Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges. Journal of Water Process Engineering, 50, 103301.
  • 7. Khan, S.U., Islam, D.T., Farooqi, I.H., Ayub, S., Basheer, F., 2019. Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Safety and Environmental Protection, 122, 118-130.
  • 8. Kononova, O.N., Bryuzgina, G.L., Apchitaeva, O.V., Kononov, Y.S., 2019. Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions. Arabian Journal of Chemistry, 12, 2713-2720.
  • 9. Rezgui, S., Ghazouani, M., Bousselmi, L., Akrout, H., 2022. Efficient treatment for tannery wastewater through sequential electro-Fenton and electrocoagulation processes. Journal of Environmental Chemical Engineering, 10(3), 107424.
  • 10. Sabzehmeidani, M.M., Mahnaee, S., Ghaedi, M., Heidari, H., Roy, V.A.L., 2021. Carbon-based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances, 2, 598-627.
  • 11. Avila, M., Burks, T., Akhtar, F., Göthelid, M., Lansåker, P.C., Toprak, M.S., Muhammed, M., Uheida, A., 2014. Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions. Chemical Engineering Journal, 245, 201-209.
  • 12. Doyo, A.N., Kumar, R., Barakat, M.A., 2023. Recent advances in cellulose, chitosan, and alginate-based biopolymeric composites for adsorption of heavy metals from wastewater. Journal of Taiwan Institute of Chemical Engineers, 151, 105095.
  • 13. Liu, W., Zhang, J., Zhang, C., Wang, Y., Li, Y., 2010. Adsorptive removal of Cr(VI) by Fe-modified activated carbon prepared from Trapa natans husk. Chemical Engineering Journal, 162, 677-684.
  • 14. Madenli, Ö., Akarsu, C., Adigüzel, A.O., Altuntepe, A., Zan, R., Deveci, E.Ü., 2022. Synthesis of graphite/rGO-modified fungal hyphae for chromium(VI) bioremediation process. Environmental Technology, 45(5), 811-826.
  • 15. Deveci, E.Ü., Madenli, Ö., Akarsu, C., Zan, R., 2024. Synthesis of reduced graphene oxide-fungal hyphae biochar/iron oxide composite: characterization, adsorption performance, and removal mechanisms. International Journal of Environmental Science and Technology, 1-14.
  • 16. Zhang, Q., Hou, Q., Huang, G., Fan, Q., 2020. Removal of heavy metals in aquatic environment by graphene oxide composites: A review. Environmental Science and Pollution Research, 27, 190-209.
  • 17. Wu, L., Li, M., Sun, Q., Zhang, C., 2020. Preparation of RGO and anionic polyacrylamide composites for removal of Pb(II) in aqueous solution. Polymers, 12(6), 1426
  • 18. Bali, M., Tlili, H., 2019. Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon. International Journal of Environmental Science and Technology, 16, 249-258.
  • 19. Jin, J., Sun, J., Lv, K., Huang, X., Wang, J., Liu, J., Bai, Y., Guo, X., Zhao, J., Liu, J., 2021. Magnetic-responsive CNT/chitosan composite as stabilizer and adsorbent for organic contaminants and heavy metal removal. Journal of Molecular Liquids, 334, 116087.
  • 20. Yu, P., Wang, H.-Q., Bao, R.-Y., Liu, Z., Yang, W., Xie, B.-H., 2017. Self-assembled sponge-like chitosan/reduced graphene oxide/montmorillonite composite hydrogels without cross-linking of chitosan for effective Cr(VI) sorption. ACS Sustainable Chemistry & Engineering, 5, 1557-1566.
  • 21. Deveci, E.Ü., Akarsu, C., Gönen, Ç., Özay, Y., 2019. Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process Biochemistry, 84, 124-133.
  • 22. Qiu, T., Yan, H., Li, J., Liu, Q., Ai, G., 2018. Response surface method for optimization of leaching of a low-grade ionic rare earth ore. Powder Technology, 330, 330-338.
  • 23. Prabha, P.H., Ranganathan, T.V., 2018. Process optimization for evaluation of barrier properties of tapioca starch-based biodegradable polymer film. International Journal of Biological Macromolecules, 120, 361-370.
  • 24. Cho, I.H., Zoh, K.D., 2007. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes and Pigments, 75, 533-543.
  • 25. Khan, T.A., Nazir, M., Ali, I., Kumar, A., 2017. Removal of Chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arabian Journal of Chemistry, 10, S2388-S2398.
  • 26. Samuel, M.S., Shah, S.S., Subramaniyan, V., Qureshi, T., Bhattacharya, J., Pradeep Singh, N.D., 2018. Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium(VI) removal from aqueous solution. International Journal of Biological Macromolecules, 119, 540-547.
  • 27. Mthombeni, N.H., Onyango, M.S., Aoyi, O., 2015. Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. Journal of Taiwan Institute of Chemical Engineers, 50, 242-251.
  • 28. Alemu, A., Lemma, B., Gabbiye, N., 2019. Adsorption of chromium (III) from aqueous solution using vesicular basalt rock. Cogent Environmental Science, 5(1), 1650416.
  • 29. Banerjee, M., Basu, R.K., Das, S.K., 2018. Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility. Process Safety and Environmental Protection, 116, 693-702.
  • 30. Madenli, Ö., Akarsu, C., Deveci, E.Ü., 2023. Effective removal of hexavalent chromium by novel modified alginate-based biocomposites: Characterization, kinetics and equilibrium studies. Ceramics International, 49, 16440-16450.
  • 31. Sukumar, C., Janaki, V., Vijayaraghavan, K., Kamala-Kannan, S., Shanthi, K., 2017. Removal of Cr(VI) using co-immobilized activated carbon and Bacillus subtilis: Fixed-bed column study. Clean Technologies and Environmental Policy, 19, 251-258.
  • 32. Rangabhashiyam, S., Nandagopal, M.S.G., Nakkeeran, E., Selvaraju, N., 2016. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column. Environmental Monitoring and Assessment, 188, 1-13.
  • 33. Saravanan, D., Gomathi, T., Sudha, P.N., 2013. Sorption studies on heavy metal removal using chitin/bentonite biocomposite. International Journal of Biological Macromolecules, 53, 67-71.

Optimization of Cr(VI) Removal Using Response Surface Methodology with Graphite-Calcium Alginate Modified Fungal Biocomposites

Yıl 2024, Cilt: 39 Sayı: 4, 1143 - 1150, 25.12.2024
https://doi.org/10.21605/cukurovaumfd.1606470

Öz

Environmental pollution by heavy metals such as Cr(VI) resulting from industrial activities poses a serious threat to both environmental and human health. This study aims to synthesize a biocomposite by modifying Penicillium roqueforti fungal mycelium with graphite and calcium alginate, and to investigate the Cr(VI) removal performance of this biocomposite. The adsorption capacities of biocomposites are of great importance for economic and environmental sustainability. The Cr(VI) removal performance of the synthesized biocomposite was optimized using the Box-Behnken statistical model. The optimization process examined the effects of independent variables such as graphite concentration, adsorption time, and initial Cr(VI) concentration. Experimental results indicated that the highest removal efficiency was achieved at a graphite concentration of 0.1 g/L, an adsorption time of 11 hours, and a Cr(VI) concentration of 30 mg/L. Under these conditions, a Cr(VI) removal efficiency of 93.3% was achieved The high removal efficiency, low cost, and eco-friendliness of the biocomposite demonstrate its potential for use in industrial wastewater treatment. Furthermore, this study highlights the advantages of the biosorption method compared to conventional heavy metal removal techniques, such as reduced use of chemical additives, operational ease, and reusability. The results obtained provide valuable insights for future studies and contribute significantly to the fields of environmental engineering and wastewater management.

Kaynakça

  • 1. Kumar, R., Barakat, M.A., Al-Mur, B.A., Alseroury, F.A., Eniola, J.O., 2020. Photocatalytic degradation of cefoxitin sodium antibiotic using novel BN/CdAl2O4 composite. Journal of Cleaner Production, 246, 119076.
  • 2. Liang, S., Cai, W., Dang, C., Peng, X., Luo, Z., Wei, X., 2023. Synthesis of sodium alginate/phosphorus tetramethylmethyl sulfate biocomposite beads with exceptional adsorption rate for Cr(VI) removal. Journal of Environmental Chemical Engineering, 11(2), 109317.
  • 3. Staroń, P., Kuciakowski, J., Chwastowski, J., 2023. Biocomposite of hydrochar and Lindnera jadinii with magnetic properties for adsorptive removal of cadmium ions. Journal of Environmental Chemical Engineering, 11(3), 110270.
  • 4. Zou, H., Zhao, J., He, F., Zhong, Z., Huang, J., Zheng, Y., Zhang, Y., Yang, Y., Yu, F., Bashir, M.A., Gao, B., 2021. Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 413, 125252.
  • 5. Dognani, G., Hadi, P., Ma, H., Cabrera, F.C., Job, A.E., Agostini, D.L.S., Hsiao, B.S., 2019. Effective chromium removal from water by polyaniline-coated electrospun adsorbent membrane. Chemical Engineering Journal, 372, 341-351.
  • 6. Djellabi, R., Su, P., Elimian, E.A., Poliukhova, V., Nouacer, S., Abdelhafeez, I.A., Abderrahim, N., Aboagye, D., Andhalkar, V.V., Nabgan, W., Rtimi, S., 2022. Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges. Journal of Water Process Engineering, 50, 103301.
  • 7. Khan, S.U., Islam, D.T., Farooqi, I.H., Ayub, S., Basheer, F., 2019. Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Safety and Environmental Protection, 122, 118-130.
  • 8. Kononova, O.N., Bryuzgina, G.L., Apchitaeva, O.V., Kononov, Y.S., 2019. Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions. Arabian Journal of Chemistry, 12, 2713-2720.
  • 9. Rezgui, S., Ghazouani, M., Bousselmi, L., Akrout, H., 2022. Efficient treatment for tannery wastewater through sequential electro-Fenton and electrocoagulation processes. Journal of Environmental Chemical Engineering, 10(3), 107424.
  • 10. Sabzehmeidani, M.M., Mahnaee, S., Ghaedi, M., Heidari, H., Roy, V.A.L., 2021. Carbon-based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances, 2, 598-627.
  • 11. Avila, M., Burks, T., Akhtar, F., Göthelid, M., Lansåker, P.C., Toprak, M.S., Muhammed, M., Uheida, A., 2014. Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions. Chemical Engineering Journal, 245, 201-209.
  • 12. Doyo, A.N., Kumar, R., Barakat, M.A., 2023. Recent advances in cellulose, chitosan, and alginate-based biopolymeric composites for adsorption of heavy metals from wastewater. Journal of Taiwan Institute of Chemical Engineers, 151, 105095.
  • 13. Liu, W., Zhang, J., Zhang, C., Wang, Y., Li, Y., 2010. Adsorptive removal of Cr(VI) by Fe-modified activated carbon prepared from Trapa natans husk. Chemical Engineering Journal, 162, 677-684.
  • 14. Madenli, Ö., Akarsu, C., Adigüzel, A.O., Altuntepe, A., Zan, R., Deveci, E.Ü., 2022. Synthesis of graphite/rGO-modified fungal hyphae for chromium(VI) bioremediation process. Environmental Technology, 45(5), 811-826.
  • 15. Deveci, E.Ü., Madenli, Ö., Akarsu, C., Zan, R., 2024. Synthesis of reduced graphene oxide-fungal hyphae biochar/iron oxide composite: characterization, adsorption performance, and removal mechanisms. International Journal of Environmental Science and Technology, 1-14.
  • 16. Zhang, Q., Hou, Q., Huang, G., Fan, Q., 2020. Removal of heavy metals in aquatic environment by graphene oxide composites: A review. Environmental Science and Pollution Research, 27, 190-209.
  • 17. Wu, L., Li, M., Sun, Q., Zhang, C., 2020. Preparation of RGO and anionic polyacrylamide composites for removal of Pb(II) in aqueous solution. Polymers, 12(6), 1426
  • 18. Bali, M., Tlili, H., 2019. Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon. International Journal of Environmental Science and Technology, 16, 249-258.
  • 19. Jin, J., Sun, J., Lv, K., Huang, X., Wang, J., Liu, J., Bai, Y., Guo, X., Zhao, J., Liu, J., 2021. Magnetic-responsive CNT/chitosan composite as stabilizer and adsorbent for organic contaminants and heavy metal removal. Journal of Molecular Liquids, 334, 116087.
  • 20. Yu, P., Wang, H.-Q., Bao, R.-Y., Liu, Z., Yang, W., Xie, B.-H., 2017. Self-assembled sponge-like chitosan/reduced graphene oxide/montmorillonite composite hydrogels without cross-linking of chitosan for effective Cr(VI) sorption. ACS Sustainable Chemistry & Engineering, 5, 1557-1566.
  • 21. Deveci, E.Ü., Akarsu, C., Gönen, Ç., Özay, Y., 2019. Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective. Process Biochemistry, 84, 124-133.
  • 22. Qiu, T., Yan, H., Li, J., Liu, Q., Ai, G., 2018. Response surface method for optimization of leaching of a low-grade ionic rare earth ore. Powder Technology, 330, 330-338.
  • 23. Prabha, P.H., Ranganathan, T.V., 2018. Process optimization for evaluation of barrier properties of tapioca starch-based biodegradable polymer film. International Journal of Biological Macromolecules, 120, 361-370.
  • 24. Cho, I.H., Zoh, K.D., 2007. Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes and Pigments, 75, 533-543.
  • 25. Khan, T.A., Nazir, M., Ali, I., Kumar, A., 2017. Removal of Chromium(VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent. Arabian Journal of Chemistry, 10, S2388-S2398.
  • 26. Samuel, M.S., Shah, S.S., Subramaniyan, V., Qureshi, T., Bhattacharya, J., Pradeep Singh, N.D., 2018. Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium(VI) removal from aqueous solution. International Journal of Biological Macromolecules, 119, 540-547.
  • 27. Mthombeni, N.H., Onyango, M.S., Aoyi, O., 2015. Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. Journal of Taiwan Institute of Chemical Engineers, 50, 242-251.
  • 28. Alemu, A., Lemma, B., Gabbiye, N., 2019. Adsorption of chromium (III) from aqueous solution using vesicular basalt rock. Cogent Environmental Science, 5(1), 1650416.
  • 29. Banerjee, M., Basu, R.K., Das, S.K., 2018. Cr(VI) adsorption by a green adsorbent walnut shell: Adsorption studies, regeneration studies, scale-up design and economic feasibility. Process Safety and Environmental Protection, 116, 693-702.
  • 30. Madenli, Ö., Akarsu, C., Deveci, E.Ü., 2023. Effective removal of hexavalent chromium by novel modified alginate-based biocomposites: Characterization, kinetics and equilibrium studies. Ceramics International, 49, 16440-16450.
  • 31. Sukumar, C., Janaki, V., Vijayaraghavan, K., Kamala-Kannan, S., Shanthi, K., 2017. Removal of Cr(VI) using co-immobilized activated carbon and Bacillus subtilis: Fixed-bed column study. Clean Technologies and Environmental Policy, 19, 251-258.
  • 32. Rangabhashiyam, S., Nandagopal, M.S.G., Nakkeeran, E., Selvaraju, N., 2016. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column. Environmental Monitoring and Assessment, 188, 1-13.
  • 33. Saravanan, D., Gomathi, T., Sudha, P.N., 2013. Sorption studies on heavy metal removal using chitin/bentonite biocomposite. International Journal of Biological Macromolecules, 53, 67-71.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm, Çevre Kirliliği ve Önlenmesi
Bölüm Makaleler
Yazarlar

Özgecan Madenli 0000-0002-8673-3963

Ceyhun Akarsu 0000-0002-0168-9941

Ece Ümmü Deveci 0000-0002-7551-188X

Yayımlanma Tarihi 25 Aralık 2024
Gönderilme Tarihi 29 Temmuz 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 4

Kaynak Göster

APA Madenli, Ö., Akarsu, C., & Deveci, E. Ü. (2024). Grafit-Kalsiyum Aljinat Modifiyeli Fungal Biyokompozitlerin Tepki Yüzeyi Metodolojisi ile Cr(VI) Giderim Optimizasyonu. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 1143-1150. https://doi.org/10.21605/cukurovaumfd.1606470