Türkiye’nin Büyük Şehirlerinde Yaz Aylarında Cam Filmi Kullanımı ile Isı Kazancı Kestirimi ve Maliyet Analizi
Yıl 2025,
Cilt: 40 Sayı: 1, 17 - 31, 26.03.2025
Erdem Onur Özyurt
,
Mehmet Gökhan Gökçen
,
Mehmet İpekoğlu
Öz
Küresel ısınma ile bağlantılı olarak dünya çapında birçok felaket meydana gelmektedir. Sera gazlarının emisyon seviyelerini azaltmanın yollarını bulmak için birçok çalışma yürütülmektedir. Fosil yakıt tüketiminin azaltılması emisyonları azaltmak için kullanılan en yaygın yöntemdir. Bu çalışmada belirli cam filmi özelliklerine sahip bir model binada sağlanacak ısı kazancının kestirimi gerçekleştirilmiştir. Sonuçlar, saydam ve renkli cam üzerine kaplanmış üç film tipi için karşılaştırmalı olarak verilmiştir. Isı kazancı kestirimi, şehir, cam, bina ve nem özellikleri dikkate alınarak yaz günleri için uyarlamalı olarak yapılmıştır. Filmsiz saydam cam için elde edilen son oda sıcaklığı referans olarak alınmış ve diğer yedi tipte cam için kestirim bu referansa göre yapılmıştır. Örnek binanın konumu, sıcaklığı ve cephesi gibi özellikler dikkate alınarak elektrik tüketimi, karbon emisyonu ve fiyat açısından maliyet analizi yapılmıştır.
Kaynakça
- 1. Ulaş, A. (2010). Binalarda TS 825 hesap yöntemine göre ısı kaybı, yakıt tüketimi, karbondioksit emisyonu hesabı ve maliyet analizi. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Ankara, 155.
- 2. Bektaş, B. ve Aksoy, U.T. (2005). Soğuk iklimlerdeki binalarda pencere sistemlerinin enerji performansı. Fırat Üniv. Fen ve Müh. Bil. Der., 17(3), 499-508.
- 3. Gago, E.J., Muneer, T., Knez, M. & Köster, H. (2015). Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renewable and Sustainable Energy Reviews, 41, 1-
13.
- 4. Rezaei, S.D., Shannigrahi, S. & Ramakrishna, S. (2017). A review of conventional, advanced, and smart glazing technologies and materials for ımproving ındoor environment. Solar Energy Materials and Solar
Cells, 159, 26-51.
- 5. Cuce, E. (2018). Accurate and reliable U-value assessment of Argon-filled double glazed Windows: a numerical and experimental investigation. Energy and Buildings, 171, 100-106.
- 6. Aycam, I. (1999). Farklı malzemelerle üretilen pencere tiplerinin ısıl performanslarının incelenmesi ve enerji etkin pencere seçimi. 1999 IV. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi (TESKON’99), Türkiye, 61-
73.
- 7. Cuce, E. & Riffat, S.B. (2015). A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev., 41, 695-714.
- 8. Huang, Y., Niu, J.-L. & Chung, T.-M. (2014). Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Appl.
Energy, 134, 215-228.
- 9. Wang, L. & Greenberg, S. (2015). Window operation and impacts on building energy consumption. Energy Build, 92, 313-321.
- 10. Meszaros, R., Merle, B., Wild, M., Durst, K., Göken, M. & Wondraczek, L. (2012). Effect of thermal annealing on the mechanical properties of low-emissivity physical vapor deposited multilayer-coatings for architectural applications. Thin Solid Films, 520, 7130-7135.
- 11. Li, C., Tan, J., Chow, T.T. & Qiu, Z. (2015). Experimental and theoretical study on the effect of window films on building energy consumption. Energy Build, 102, 129-138.
- 12. Yousif, K. M. (2012). Control of solar heat gain to reduce the energy consumption of buildings in Iraq. 2012 Proceedings of the World Renewable Energy Forum, Denver, CO, USA, 13-17.
- 13. Yin, R., Xu, P. & Shen, P. (2012). Case study: energy savings from solar window film in two commercial buildings in Shanghai. Energy Build, 45, 132-140.
- 14. Dussault, J.-M., Gosselin, L. & Galstian, T. (2012). Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads. Solar Energy, 86, 3405-3416.
- 15. Chen, B., Ji, Y. & Xu, P. (2012). Impact of window shading devices on energy performance of prototypical buildings. Journal of Multidisciplinary Engineering Science and Technology, 3(11), 5994-5999.
- 16. Vanhoutteghem, L., Skarning, G.C.J., Hvii, C.A. & Svendsen, S. (2015). Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy Build, 102, 149-156.
- 17. Hee, W., Alghoula, M.A., Bakhtyar, B., Elayeba, O., Shameri, M.A. & Alrubaih, M.S. (2015). The role of window glazing on daylighting and energy saving in buildings. Renew. Sustain. Energy Rev., 42, 323-343.
- 18. Yang, Q., Liu, M., Shu, C., Mmereki, D., Hossain, U. & Zhan, X. (2015). Impact analysis of window-wall ratio on heating and cooling energy consumption of residential buildings in hot summer and cold winter zone
in China. J. Eng., 538254, 1-17.
- 19. Jelle, B.P., Gustavsen, A., Nilsen, T.N. & Jacobsen, T. (2007). Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings. Solar Energy
Materials and Solar Cells, 91(4), 342-354.
- 20. Gure, N. & Yilmaz, M. (2016). Alternative solution via car window filming ımplementation to combat global warming and resulted benefits around geographic Europe and the European Union. Int. J. Global Warming, 10(1-3), 263-290.
- 21. Cengel, Y.A. & Boles, M.A. (2007). Thermodynamics: an engineering approach. McGraw-Hill, New York, 1009.
- 22. Maleki S.A.M., Hizam H. & Gomes C. (2017). Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: models re-visited. Energies, 10, 134.
- 23. Spencer, J.W. (1971). Fourier series representation of the position of the sun. Applied Optics, 10, 2569-2571.
- 24. Badescu, V. (2002). 3D isotropic approximation for solar diffuse irradiance on tilted surfaces. Renew. Energy, 26, 221-233.
- 25. Gueymard, C. (1993). Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Sol. Energy, 51, 385-397.
- 26. ASHRAE, (1997). Handbook: fundamentals, Chapter 29, Fenestration, American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Atlanta GA.
- 27. Iqbal, M. (1983). An introduction to solar radiation. Academic Press, Toronto, ON, Canada, 408.
- 28. Picard, A., Davis, R.S., Glaser, M. & Fujii, K. (2008). Revised formula for the density of moist air (CIPM-2007). Metrologia, 45, 149-155.
- 29. Wang, N., Zhang, J. & Xia, X. (2013). Energy consumption of air conditioners at different temperature set points. Energy and Buildings, 65, 412-418.
- 30. U.S. Energy Information Administration, State Electricity Profiles, U.S. Profile, Table 5 and 7, https://www.eia.gov/tools/faqs/faq.php?id=74&t=11, Erişim tarihi: 21.12.2023, 2023, Washington DC.
- 31. Winckler, L., & DeBusk, S. (2012). Final report on work performed under agreement. (DE-FOA-0000115).
- 32. Cengel, Y.A. & Ghajar, A. (2010). Heat and mass transfer: fundamentals and applications. McGraw-Hill, New York, 991.
Heat Gain Estimation with Window Film Application in Some Major Cities of Turkiye during Summer and Related Cost Estimation
Yıl 2025,
Cilt: 40 Sayı: 1, 17 - 31, 26.03.2025
Erdem Onur Özyurt
,
Mehmet Gökhan Gökçen
,
Mehmet İpekoğlu
Öz
Many disasters occur around the world in connection with global warming. Many studies are conducted to find ways of decreasing levels of emissions of greenhouse gases. Reducing consumption of fossil fuels is the most common method used to decrease emissions. This study focusses on estimation of heat gain in a model room with given characteristics of window filming. The results are given comparatively for eight types of windows including clear and tinted windows and additionally three types of filming coated on both types. Heat gain is estimated for summer days adaptively by using the models taking into account the location of the city, the position of windows, the building volume and moisture. The heat gain and final room temperature for clear window is taken as a reference and other seven calculations are observed in terms of differences between heat gains in order to evaluate and compare their effectiveness. Cost analysis is performed in terms of electric consumption, carbon emission and price for characteristics including location, temperature and facade of the sample room.
Kaynakça
- 1. Ulaş, A. (2010). Binalarda TS 825 hesap yöntemine göre ısı kaybı, yakıt tüketimi, karbondioksit emisyonu hesabı ve maliyet analizi. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Ankara, 155.
- 2. Bektaş, B. ve Aksoy, U.T. (2005). Soğuk iklimlerdeki binalarda pencere sistemlerinin enerji performansı. Fırat Üniv. Fen ve Müh. Bil. Der., 17(3), 499-508.
- 3. Gago, E.J., Muneer, T., Knez, M. & Köster, H. (2015). Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renewable and Sustainable Energy Reviews, 41, 1-
13.
- 4. Rezaei, S.D., Shannigrahi, S. & Ramakrishna, S. (2017). A review of conventional, advanced, and smart glazing technologies and materials for ımproving ındoor environment. Solar Energy Materials and Solar
Cells, 159, 26-51.
- 5. Cuce, E. (2018). Accurate and reliable U-value assessment of Argon-filled double glazed Windows: a numerical and experimental investigation. Energy and Buildings, 171, 100-106.
- 6. Aycam, I. (1999). Farklı malzemelerle üretilen pencere tiplerinin ısıl performanslarının incelenmesi ve enerji etkin pencere seçimi. 1999 IV. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi (TESKON’99), Türkiye, 61-
73.
- 7. Cuce, E. & Riffat, S.B. (2015). A state-of-the-art review on innovative glazing technologies. Renew. Sustain. Energy Rev., 41, 695-714.
- 8. Huang, Y., Niu, J.-L. & Chung, T.-M. (2014). Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Appl.
Energy, 134, 215-228.
- 9. Wang, L. & Greenberg, S. (2015). Window operation and impacts on building energy consumption. Energy Build, 92, 313-321.
- 10. Meszaros, R., Merle, B., Wild, M., Durst, K., Göken, M. & Wondraczek, L. (2012). Effect of thermal annealing on the mechanical properties of low-emissivity physical vapor deposited multilayer-coatings for architectural applications. Thin Solid Films, 520, 7130-7135.
- 11. Li, C., Tan, J., Chow, T.T. & Qiu, Z. (2015). Experimental and theoretical study on the effect of window films on building energy consumption. Energy Build, 102, 129-138.
- 12. Yousif, K. M. (2012). Control of solar heat gain to reduce the energy consumption of buildings in Iraq. 2012 Proceedings of the World Renewable Energy Forum, Denver, CO, USA, 13-17.
- 13. Yin, R., Xu, P. & Shen, P. (2012). Case study: energy savings from solar window film in two commercial buildings in Shanghai. Energy Build, 45, 132-140.
- 14. Dussault, J.-M., Gosselin, L. & Galstian, T. (2012). Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads. Solar Energy, 86, 3405-3416.
- 15. Chen, B., Ji, Y. & Xu, P. (2012). Impact of window shading devices on energy performance of prototypical buildings. Journal of Multidisciplinary Engineering Science and Technology, 3(11), 5994-5999.
- 16. Vanhoutteghem, L., Skarning, G.C.J., Hvii, C.A. & Svendsen, S. (2015). Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy Build, 102, 149-156.
- 17. Hee, W., Alghoula, M.A., Bakhtyar, B., Elayeba, O., Shameri, M.A. & Alrubaih, M.S. (2015). The role of window glazing on daylighting and energy saving in buildings. Renew. Sustain. Energy Rev., 42, 323-343.
- 18. Yang, Q., Liu, M., Shu, C., Mmereki, D., Hossain, U. & Zhan, X. (2015). Impact analysis of window-wall ratio on heating and cooling energy consumption of residential buildings in hot summer and cold winter zone
in China. J. Eng., 538254, 1-17.
- 19. Jelle, B.P., Gustavsen, A., Nilsen, T.N. & Jacobsen, T. (2007). Solar material protection factor (SMPF) and solar skin protection factor (SSPF) for window panes and other glass structures in buildings. Solar Energy
Materials and Solar Cells, 91(4), 342-354.
- 20. Gure, N. & Yilmaz, M. (2016). Alternative solution via car window filming ımplementation to combat global warming and resulted benefits around geographic Europe and the European Union. Int. J. Global Warming, 10(1-3), 263-290.
- 21. Cengel, Y.A. & Boles, M.A. (2007). Thermodynamics: an engineering approach. McGraw-Hill, New York, 1009.
- 22. Maleki S.A.M., Hizam H. & Gomes C. (2017). Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: models re-visited. Energies, 10, 134.
- 23. Spencer, J.W. (1971). Fourier series representation of the position of the sun. Applied Optics, 10, 2569-2571.
- 24. Badescu, V. (2002). 3D isotropic approximation for solar diffuse irradiance on tilted surfaces. Renew. Energy, 26, 221-233.
- 25. Gueymard, C. (1993). Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Sol. Energy, 51, 385-397.
- 26. ASHRAE, (1997). Handbook: fundamentals, Chapter 29, Fenestration, American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Atlanta GA.
- 27. Iqbal, M. (1983). An introduction to solar radiation. Academic Press, Toronto, ON, Canada, 408.
- 28. Picard, A., Davis, R.S., Glaser, M. & Fujii, K. (2008). Revised formula for the density of moist air (CIPM-2007). Metrologia, 45, 149-155.
- 29. Wang, N., Zhang, J. & Xia, X. (2013). Energy consumption of air conditioners at different temperature set points. Energy and Buildings, 65, 412-418.
- 30. U.S. Energy Information Administration, State Electricity Profiles, U.S. Profile, Table 5 and 7, https://www.eia.gov/tools/faqs/faq.php?id=74&t=11, Erişim tarihi: 21.12.2023, 2023, Washington DC.
- 31. Winckler, L., & DeBusk, S. (2012). Final report on work performed under agreement. (DE-FOA-0000115).
- 32. Cengel, Y.A. & Ghajar, A. (2010). Heat and mass transfer: fundamentals and applications. McGraw-Hill, New York, 991.