Araştırma Makalesi
BibTex RIS Kaynak Göster

Reolojik Uygulamalarda Bentonit Dispersiyonlarının Tiksotropik Özelliklerinin İyileştirilmesi

Yıl 2025, Cilt: 40 Sayı: 1, 49 - 60, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665824

Öz

Bu çalışmada, bentonitlerin reolojik özelliklerinin alkali aktivasyonla iyileştirilmesi araştırılmıştır. Çalışma kapsamında kullanılan numunelerin karakterizasyonları X-ışını floresans spektroskopisi (XRF), tanecik boyut dağılımı (PSD), katyon değişim kapasitesi (CEC), spesifik yüzey alanı (SSA) analizleri ve taramalı elektron mikroskobu (SEM) görüntüleri ile belirlenmiştir. Süspansiyonların reolojik özellikleri görünür viskozite (AV), plastic viskozite (PV), kopma noktası (YP) ve jel kuvveti (GS) ölçümleri ile belirlenmiştir. Ayrıca statik filtrasyon analizi yapılmış olup, tiksotropik özellikleri kayma incelme indeksi (STI) ve tiksotropi indeksi (TI) hesaplamaları ile belirlenmiştir. Reolojik akış parametreleri en küçük kareler yöntemi (EKK) kullanılarak hesaplanmış olup, model denklemleri Herschel-Bulkley akış modeline (HBM) göre oluşturulmuştur. Yapılan analizler sonucunda alkali aktivasyon işleminin bentonit dispersiyonlarının reolojik ve tiksotropik özelliklerini iyileştirdiği belirlenmiştir. Ayrıca, reogram eğrileri süspansiyonların kayma incelme davranışı gösteren bir akış gösterdiğini ifade etmektedir. HBM reolojik model değerlendirmesinde en iyi akış özelliklerinin ham numunelerde EB kodlu numuneye (0,9987 R2), aktivasyonlu numunelerde ise NB kodlu numuneye (0,9985 R2) ait olduğu belirlenmiştir.

Kaynakça

  • 1. Koutsopoulo, E., Christidis, G.E. & Marantos, I. (2016). Mineralogy, geochemistry and physical properties of bentonites from the Western Thrace Region and the islands of Samos and Chios, East Aegean, Greece. Clay Minerals, 51, 563-88.
  • 2. Luckham, P.F., Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82(1-3), 43-92.
  • 3. Mpofu, P., Addai-Mensah, J. & Ralston, J. (2004). Flocculation and dewatering behaviour of smectite dispersions: effect of polymer structure type. Minerals Engineering, 17(3), 411-23.
  • 4. Shakeel, A., Safar, Z., Ibanez, M., Van Paassen, L. & Chassagne, C. (2020). Flocculation of clay suspensions by anionic and cationic polyelectrolytes: a systematic analysis. Minerals, 10(11), 999-1023.
  • 5. Bergaya, F., Lagaly, G. (2013). Handbook of clay science: Developments in clay science (2nd ed.). Elsevier, United Kingdom.
  • 6. Zhou, C., Tong, D. & Yu, W. (2019). Smectite nanomaterials: preparation, properties, and functional applications, nanomaterials from clay minerals. Elsevier, United Kingdom.
  • 7. Hwang, J., Pini, R. (2019). Supercritical CO2 and CH4 uptake by illite-smectite clay minerals. Environmental Science & Technology, 53(19), 11588-11596.
  • 8. Abdou, M.I., Ahmed, H.S. (2011). Effect of particle size of bentonite on rheological behavior of the drilling mud. Journal of Petroleum Science and Technology, 29, 2220-2233.
  • 9. Abdollahi, M., Pourmahdi, M. & Nasiri A.R. (2018). Synthesis and characterization of lignosulfonate/acrylamide graft copolymers and their application in environmentally friendly water-based drilling fluid. Journal of Petroleum Science and Engineering, 171, 484-494.
  • 10. Xiang, G., Ye, W., Xu, Y. & Jalal, F. E. (2020). Swelling deformation of Na-bentonite in solutions containing different cations. Engineering Geology, 277, 105757.
  • 11. Harjupatana, T., Miettinen, A. & Kataja, M. (2022). A method for measuring wetting and swelling of bentonite using X-ray imaging. Applied Clay Science, 221, 106485.
  • 12. Afolabi, R.O., Orodu, O.D. & Efeovbokhan V.E. (2017). Properties and application of Nigerian bentonite clay deposits for drilling mud formulation: recent advances and future prospects. Applied Clay Science, 143, 39-49.
  • 13. Lagaly, G. (2006). Handbook of clay science: developments in clay science (2nd ed.). Elseviler, United Kingdom.
  • 14. Goel, P.N., Anand, A., Anand, S.R., Jha, K. & Richhariya, G. (2022). Development of cost-effective drilling fluid from banana peel pectin and fly ash for loss circulation control. Materials Today: Proceedings, 62, 4177-4181.
  • 15. Erdoğan, Y., Kök O.E. (2019). Production and charac¬terization of nanobentonite from sodium bentonite with mechanical grinding. Fresenius Environmental Bulle¬tin, 28(11), 8141-8150.
  • 16. Agwu, O.E., Akpabio, J.U., Ekpenyong, M.E., Inyang, U.G., Asuquo, D.E., Eyoh, I.J. & Adeoye O.S. (2021). A comprehensive review of laboratory, field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. Journal of Natural Gas Science and Engineering, 94, 104046.
  • 17. Altun, G., Osgouei, A.E. (2014). Investigation and remediation of active-clay contaminated sepiolite drilling muds. Applied Clay Science, 102, 238-245.
  • 18. Karagüzel, C., Çetinel, T., Boylu, F., Çinku, K. & Çelik, M.S. (2010). Activation of (Na, Ca)-bentonites with soda and MgO and their utilization as drilling mud. Applied Clay Science, 48, 398-404.
  • 19. Kök, O.E., Vapur, H. & Erdoğan, Y. (2023). Rheological behavior of activated bentonite suspensions and estimation of flow models using least squares method. Geoenergy Science and Engineering, 230, 212181.
  • 20. API SPEC 13-A, (2010). Specification for Drilling Fluids Materials. American Petroleum Institute, Washington.
  • 21. API SPEC 13-I, (2020). Laboratory Testing of Drilling Fluids. American Petroleum Institute, Washington.
  • 22. Caenn, R., Darley, H.C. & Gray, G.R. (2011). Composition and properties of drilling and completion fluids. Gulf professional publishing, Elsevier.
  • 23. Savins, J.G., Roper, W.F. (1954). A direct indicating viscometer for drilling fluids. American Petroleum Institute (API-54-007), New York.
  • 24. Yıldız, N., Sarıkaya, Y. & Çalımlı, A. (1999). The characterization of Na2CO3 activated Kütahya bentonite. Turkish Journal of Chemistry, 23(3): 309-318.
  • 25. Çinku, K., Boylu, F., Duman, F. & Çelik, M.S. (2010). The effect of the presence and amount of ions in the water on the product properties in the enrichment and activation of bentonites with soda. Istanbul University Journal of Engineering Sciences, 1(1), 9-18.
  • 26. Karimi, L., Salem, A. (2011). Analysis of bentonite specific surface area by kinetic model during activation process in presence of sodium carbonate. Microporous and mesoporous materials, 141(3), 81-87.

Improving of Thixotropic Properties of Bentonite Dispersions in Rheological Applications

Yıl 2025, Cilt: 40 Sayı: 1, 49 - 60, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665824

Öz

In this study, the improvement of the rheological properties of bentonites by alkaline activation was investigated. The characterizations of the samples used in the study were determined by X-ray fluorescence spectroscopy (XRF), particle size distribution (PSD), cation exchange capacity (CEC), specific surface area (SSA) analysis and scanning electron microscopy (SEM) images. The rheological properties of the suspensions were determined by apparent viscosity (AV), plastic viscosity (PV), yield point (YP) and gel strength (GS) measurements. In addition, static filtration analysis was performed and thixotropic properties were determined by shear thinning index (STI) and thixotropy index (TI) calculations. Rheological flow parameters were calculated using the least squares method (LSM) and the model equations were created according to the Herschel-Bulkley flow model (HBM). As a result of the analyzes, it was determined that the alkaline activation process improved the rheological and thixotropic properties of bentonite dispersions. Also, the rheogram curves indicate that the suspensions showed a shear-thinning flow behavior. In the HBM evaluation, it was determined that the best flow properties belonged to EB (0.9987 R2) in raw samples and NB (0.9985 R2) in activated samples.

Kaynakça

  • 1. Koutsopoulo, E., Christidis, G.E. & Marantos, I. (2016). Mineralogy, geochemistry and physical properties of bentonites from the Western Thrace Region and the islands of Samos and Chios, East Aegean, Greece. Clay Minerals, 51, 563-88.
  • 2. Luckham, P.F., Rossi, S. (1999). The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science, 82(1-3), 43-92.
  • 3. Mpofu, P., Addai-Mensah, J. & Ralston, J. (2004). Flocculation and dewatering behaviour of smectite dispersions: effect of polymer structure type. Minerals Engineering, 17(3), 411-23.
  • 4. Shakeel, A., Safar, Z., Ibanez, M., Van Paassen, L. & Chassagne, C. (2020). Flocculation of clay suspensions by anionic and cationic polyelectrolytes: a systematic analysis. Minerals, 10(11), 999-1023.
  • 5. Bergaya, F., Lagaly, G. (2013). Handbook of clay science: Developments in clay science (2nd ed.). Elsevier, United Kingdom.
  • 6. Zhou, C., Tong, D. & Yu, W. (2019). Smectite nanomaterials: preparation, properties, and functional applications, nanomaterials from clay minerals. Elsevier, United Kingdom.
  • 7. Hwang, J., Pini, R. (2019). Supercritical CO2 and CH4 uptake by illite-smectite clay minerals. Environmental Science & Technology, 53(19), 11588-11596.
  • 8. Abdou, M.I., Ahmed, H.S. (2011). Effect of particle size of bentonite on rheological behavior of the drilling mud. Journal of Petroleum Science and Technology, 29, 2220-2233.
  • 9. Abdollahi, M., Pourmahdi, M. & Nasiri A.R. (2018). Synthesis and characterization of lignosulfonate/acrylamide graft copolymers and their application in environmentally friendly water-based drilling fluid. Journal of Petroleum Science and Engineering, 171, 484-494.
  • 10. Xiang, G., Ye, W., Xu, Y. & Jalal, F. E. (2020). Swelling deformation of Na-bentonite in solutions containing different cations. Engineering Geology, 277, 105757.
  • 11. Harjupatana, T., Miettinen, A. & Kataja, M. (2022). A method for measuring wetting and swelling of bentonite using X-ray imaging. Applied Clay Science, 221, 106485.
  • 12. Afolabi, R.O., Orodu, O.D. & Efeovbokhan V.E. (2017). Properties and application of Nigerian bentonite clay deposits for drilling mud formulation: recent advances and future prospects. Applied Clay Science, 143, 39-49.
  • 13. Lagaly, G. (2006). Handbook of clay science: developments in clay science (2nd ed.). Elseviler, United Kingdom.
  • 14. Goel, P.N., Anand, A., Anand, S.R., Jha, K. & Richhariya, G. (2022). Development of cost-effective drilling fluid from banana peel pectin and fly ash for loss circulation control. Materials Today: Proceedings, 62, 4177-4181.
  • 15. Erdoğan, Y., Kök O.E. (2019). Production and charac¬terization of nanobentonite from sodium bentonite with mechanical grinding. Fresenius Environmental Bulle¬tin, 28(11), 8141-8150.
  • 16. Agwu, O.E., Akpabio, J.U., Ekpenyong, M.E., Inyang, U.G., Asuquo, D.E., Eyoh, I.J. & Adeoye O.S. (2021). A comprehensive review of laboratory, field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. Journal of Natural Gas Science and Engineering, 94, 104046.
  • 17. Altun, G., Osgouei, A.E. (2014). Investigation and remediation of active-clay contaminated sepiolite drilling muds. Applied Clay Science, 102, 238-245.
  • 18. Karagüzel, C., Çetinel, T., Boylu, F., Çinku, K. & Çelik, M.S. (2010). Activation of (Na, Ca)-bentonites with soda and MgO and their utilization as drilling mud. Applied Clay Science, 48, 398-404.
  • 19. Kök, O.E., Vapur, H. & Erdoğan, Y. (2023). Rheological behavior of activated bentonite suspensions and estimation of flow models using least squares method. Geoenergy Science and Engineering, 230, 212181.
  • 20. API SPEC 13-A, (2010). Specification for Drilling Fluids Materials. American Petroleum Institute, Washington.
  • 21. API SPEC 13-I, (2020). Laboratory Testing of Drilling Fluids. American Petroleum Institute, Washington.
  • 22. Caenn, R., Darley, H.C. & Gray, G.R. (2011). Composition and properties of drilling and completion fluids. Gulf professional publishing, Elsevier.
  • 23. Savins, J.G., Roper, W.F. (1954). A direct indicating viscometer for drilling fluids. American Petroleum Institute (API-54-007), New York.
  • 24. Yıldız, N., Sarıkaya, Y. & Çalımlı, A. (1999). The characterization of Na2CO3 activated Kütahya bentonite. Turkish Journal of Chemistry, 23(3): 309-318.
  • 25. Çinku, K., Boylu, F., Duman, F. & Çelik, M.S. (2010). The effect of the presence and amount of ions in the water on the product properties in the enrichment and activation of bentonites with soda. Istanbul University Journal of Engineering Sciences, 1(1), 9-18.
  • 26. Karimi, L., Salem, A. (2011). Analysis of bentonite specific surface area by kinetic model during activation process in presence of sodium carbonate. Microporous and mesoporous materials, 141(3), 81-87.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Newton Dışı Akışkan Akışları (Reoloji Dahil), Petrol Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Onur Eser Kök 0000-0002-7061-2921

Hüseyin Vapur 0000-0003-4438-3982

Yasin Erdogan 0000-0002-2314-5216

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Kök, O. E., Vapur, H., & Erdogan, Y. (2025). Improving of Thixotropic Properties of Bentonite Dispersions in Rheological Applications. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 49-60. https://doi.org/10.21605/cukurovaumfd.1665824