Araştırma Makalesi
BibTex RIS Kaynak Göster

NACA0018 Kesitli Sonlu Kanat için Yerel Esnek Yüzey Aerodinamik Etkilerinin Deneysel İncelenmesi

Yıl 2025, Cilt: 40 Sayı: 1, 61 - 68, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665840

Öz

Esnek yüzeyin NACA0018 sonlu kanat aerodinamik performansı üzerindeki etkisini araştırmak amacıyla düşük hızlı rüzgar tünelinde deneysel çalışma gerçekleştirilmiştir. Bu amaç doğrultusunda hücum açısının 0°-18° aralığında ve Reynolds sayısının farklı değerlerinde kanadın taşıma ve sürükleme kuvvetleri altı eksenli yük hücresi kullanılarak ölçülmüştür. Ayrıca, kanat üzerindeki akış yapısını resmetmek için yüzey yağ akış görselleştirme deneyleri gerçekleştirilmiştir. Esnek kanadın Re=3×104'te aerodinamik performansı önemli ölçüde iyileştirdiği gözlemlenmiştir. Esnek yüzeyin taşıma katsayısını arttırmakla birlikte aynı zamanda sürükleme katsayısını da azalttığı bulunmuştur. Tutunma kaybı açısı 2,5°'den 7°’ye geciktirilmiştir. Reynolds sayısı arttığında tutunma kaybı açısının daha fazla hücum açısına ötelendiği gözlemlenmiştir. Bununla birlikte, esnek yüzeyin aerodinamik performans üzerindeki etkisi Reynolds arttıkça azalmaktadır. Ayrıca, gözlemlenen uç girdabı ve laminer ayrılma kabarcığının yüzey akış yapısı önemli ölçüde etkilemektedir.

Kaynakça

  • 1. Açıkel, H.H. & Genç, M.S. (2018). Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface. Energy, 165, 176-190.
  • 2. Guo, Q., He, X., Wang, Z. & Wang, J. (2021). Effects of wing flexibility on aerodynamic performance of an aircraft model. Chinese Journal of Aeronautics, 34(9), 133-142.
  • 3. Genç, M.S., Açıkel, H.H. & Koca, K. (2020). Effect of partial flexibility over both upper and lower surfaces to flow over wind turbine airfoil. Energy Conversion and Management, 219, 113042.
  • 4. Koca, K., Genç, M.S., Bayır, E. & Soğuksu, F.K. (2022). Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output. Energy, 239, 121887.
  • 5. Demir, H. & Genç, M. S. (2017). An experimental investigation of laminar separation bubble formation on flexible membrane wing. European Journal of Mechanics - B/Fluids, 65, 326–338. https://doi.org/10.1016/j.euromechflu.2017.05.010
  • 6. Lian, Y., & Shyy, W. (2007). Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil. AIAA Journal, 45(7), 1501–1513. https://doi.org/10.2514/1.25812
  • 7. Yavuz, M.M. (2021). Flow and mechanical characteristics of a modified naca wing geometry. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 815-825.
  • 8. Tangöz, S. (2024). Investigation of surface flow behaviors on wing model made of different airfoils. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 759-770.
  • 9. Shang, H., Wang, Z., Du, L., Wang, Y. & Sun, X. (2024). Experimental and numerical investigations to the aeroelastic response of flexible thin airfoil. Physics of Fluids, 36(6), 067133.
  • 10. Lone, M. & Cooke, A. (2014). Review of pilot models used in aircraft flight dynamics. Aerospace Science and Technology, 34, 55-74.
  • 11. Kang, W., Zhang, J., Lei, P. & Xu, M. (2014). Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number. Journal of Fluids and Structures, 46, 42-58.
  • 12. Lei, P.-F., Zhang, J.-Z., Kang, W., Ren, S. & Wang, L. (2014). Unsteady Flow Separation and High Performance of Airfoil with Local Flexible Structure at Low Reynolds Number. Communications in Computational Physics, 16(3), 699-717.
  • 13. Boughou, S., Batistić, I., Omar, A., Cardiff, P., Inman, D.J. & Boukharfane, R. (2024). Investigation on aeroelasticity of morphing wing through dynamic response and virtual structural damping. Physics of Fluids, 36(9), 091902.
  • 14. Roy, A. & Mukherjee, R. (2022). Delay or control of flow separation for enhanced aerodynamic performance using an effective morphed surface. Acta Mechanica, 233(4), 1543-1566.
  • 15. He, X., Guo, Q., Xu, Y., Feng, L. & Wang, J. (2023). Aerodynamics and fluid–structure interaction of an airfoil with actively controlled flexible leeward surface. Journal of Fluid Mechanics, 954, A34.
  • 16. Almalki, H., Safaei, B., Karimzadeh Kolamroudi, M., Sahmani, S., Arman, S. & Shekoofa, O. (2024). Systematic literature review on the design, efficiency and fabrication of wind turbine blades. International Journal of Ambient Energy, 45(1), 2374057.
  • 17. Koca, K., Keskin, S., Şahin, R., Veerasamy, D. & Genç, M.S. (2024). Measurements of Flow Characterization Revealing Transition to Turbulence Associated with the Partial Flexibility-Based Flow Control at Low Reynolds Number. Arabian Journal for Science and Engineering.

Experimental Investigation of Local Flexible Surface on Aerodynamic Effects for Finite Wing with NACA0018 Section

Yıl 2025, Cilt: 40 Sayı: 1, 61 - 68, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665840

Öz

The experimental study is conducted in low-speed wind tunnel in order to explore the effects of flexible surface on the aerodynamic performance of NACA0018 finite wing. In this purpose, lift and drag force of the wing measured using six axes load cell over the angle of attack 0°-18° at different Reynolds numbers. Moreover, surface oil flow visualization experiments are performed to depict the flow structure over wing. The flexible wing remarkably improves aerodynamic performance at Re=3×104, and it also enhances the lift coefficient and diminishes the drag coefficient. The stall angle is delayed from 2.5° to 7°. It is observed that stall angle is shifted further angle of attack when Reynolds number increased. However, the effect of flexible surface on the aerodynamic performance diminishes with increasing Reynolds number. Furthermore, the observed tip vortex and laminar separation bubble significantly influence the surface flow structure.

Kaynakça

  • 1. Açıkel, H.H. & Genç, M.S. (2018). Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface. Energy, 165, 176-190.
  • 2. Guo, Q., He, X., Wang, Z. & Wang, J. (2021). Effects of wing flexibility on aerodynamic performance of an aircraft model. Chinese Journal of Aeronautics, 34(9), 133-142.
  • 3. Genç, M.S., Açıkel, H.H. & Koca, K. (2020). Effect of partial flexibility over both upper and lower surfaces to flow over wind turbine airfoil. Energy Conversion and Management, 219, 113042.
  • 4. Koca, K., Genç, M.S., Bayır, E. & Soğuksu, F.K. (2022). Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output. Energy, 239, 121887.
  • 5. Demir, H. & Genç, M. S. (2017). An experimental investigation of laminar separation bubble formation on flexible membrane wing. European Journal of Mechanics - B/Fluids, 65, 326–338. https://doi.org/10.1016/j.euromechflu.2017.05.010
  • 6. Lian, Y., & Shyy, W. (2007). Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil. AIAA Journal, 45(7), 1501–1513. https://doi.org/10.2514/1.25812
  • 7. Yavuz, M.M. (2021). Flow and mechanical characteristics of a modified naca wing geometry. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(3), 815-825.
  • 8. Tangöz, S. (2024). Investigation of surface flow behaviors on wing model made of different airfoils. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(3), 759-770.
  • 9. Shang, H., Wang, Z., Du, L., Wang, Y. & Sun, X. (2024). Experimental and numerical investigations to the aeroelastic response of flexible thin airfoil. Physics of Fluids, 36(6), 067133.
  • 10. Lone, M. & Cooke, A. (2014). Review of pilot models used in aircraft flight dynamics. Aerospace Science and Technology, 34, 55-74.
  • 11. Kang, W., Zhang, J., Lei, P. & Xu, M. (2014). Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number. Journal of Fluids and Structures, 46, 42-58.
  • 12. Lei, P.-F., Zhang, J.-Z., Kang, W., Ren, S. & Wang, L. (2014). Unsteady Flow Separation and High Performance of Airfoil with Local Flexible Structure at Low Reynolds Number. Communications in Computational Physics, 16(3), 699-717.
  • 13. Boughou, S., Batistić, I., Omar, A., Cardiff, P., Inman, D.J. & Boukharfane, R. (2024). Investigation on aeroelasticity of morphing wing through dynamic response and virtual structural damping. Physics of Fluids, 36(9), 091902.
  • 14. Roy, A. & Mukherjee, R. (2022). Delay or control of flow separation for enhanced aerodynamic performance using an effective morphed surface. Acta Mechanica, 233(4), 1543-1566.
  • 15. He, X., Guo, Q., Xu, Y., Feng, L. & Wang, J. (2023). Aerodynamics and fluid–structure interaction of an airfoil with actively controlled flexible leeward surface. Journal of Fluid Mechanics, 954, A34.
  • 16. Almalki, H., Safaei, B., Karimzadeh Kolamroudi, M., Sahmani, S., Arman, S. & Shekoofa, O. (2024). Systematic literature review on the design, efficiency and fabrication of wind turbine blades. International Journal of Ambient Energy, 45(1), 2374057.
  • 17. Koca, K., Keskin, S., Şahin, R., Veerasamy, D. & Genç, M.S. (2024). Measurements of Flow Characterization Revealing Transition to Turbulence Associated with the Partial Flexibility-Based Flow Control at Low Reynolds Number. Arabian Journal for Science and Engineering.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Aerodinamik (Hipersonik Aerodinamik Hariç)
Bölüm Makaleler
Yazarlar

Ali Emirhan Eroğlu Bu kişi benim 0009-0002-7006-2875

Tahir Durhasan 0000-0001-5212-9170

Javad Rashid Jafari Bu kişi benim 0009-0007-7497-7892

İlyas Karasu 0000-0003-3138-6236

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 2 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Eroğlu, A. E., Durhasan, T., Jafari, J. R., Karasu, İ. (2025). Experimental Investigation of Local Flexible Surface on Aerodynamic Effects for Finite Wing with NACA0018 Section. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 61-68. https://doi.org/10.21605/cukurovaumfd.1665840