Araştırma Makalesi
BibTex RIS Kaynak Göster

At Kıllı Dokuma Kumaşlar ile Takviye Edilmiş LLDPE Kompozitlerin Mekanik Özellikleri

Yıl 2025, Cilt: 40 Sayı: 1, 99 - 109, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665893

Öz

Bu çalışma, takviye malzemesi olarak at kuyruğu kılından dokunmuş kumaşlar kullanarak LLDPE (Doğrusal Düşük Yoğunluklu Polietilen) bazlı kompozitlerin mekanik özelliklerini iyileştirmeyi amaçlamaktadır. Kumaş üretiminde çözgü ve atkı iplikleri olarak her biri 20 kıldan oluşan demetler kullanılmıştır. Çözgü sıklığı sabit tutulurken, iki farklı atkı sıklığı (5 demet/cm ve 7 demet/cm) kullanılmıştır. Dokuma tipi olarak 2/1 dimi ve düz dokuma seçilmiştir. Referans numune hariç tüm kumaşlar etilen vinil asetat (EVA) ile kaplanmıştır. Kaplama işlemi, işlenmemiş kumaşlara kıyasla kompozitin atkı yönündeki çekme dayanımını %11,69 oranında artırmıştır. Kumaşın atkı sıklığı arttıkça, kompozitlerin atkı yönündeki çekme ve eğilme dayanımları iyileşmiştir. 2/1 dimi dokuma yapısına sahip kompozitlerde, düz dokumaya kıyasla çekme dayanımında hafif bir azalma gözlemlenirken, eğilme dayanımında ise düz dokuma yapısıyla artış kaydedilmiştir.

Kaynakça

  • 1. Li, X., Tabil, L. G. & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A Review. Journal of Polymers and the Environment, 15, 25-33.
  • 2. Kerni, L., Singh, S., Patnaik, A. & Kumar, N. (2020). A review on natural fiber reinforced composites. Materials Today: Proceedings, 28, 1616-1621.
  • 3. Ganguly, A., Shankar, S., Das, A., Shukla, M., Swaroop, C. & Bhardwaj, T. (2022). Natural fibre reinforced composites: A review based on additive manufacturing routes and biodegradability perspective. Materials Today: Proceedings, 62, 131-135.
  • 4. Jha, A., Thite, A., Bhardwaj, Y.K., Pant, H.J. & Choedhury, S.R. (2022). Radiation assisted development of linear low-density polyethylene/flax fibre composites by designing interface. Journal of Composite Materials, 56(28) 4259-4273.
  • 5. Dahal, R.K., Acharya, B. & Dutta, A. (2022). Mechanical, thermal, and acoustic properties of hemp and biocomposite materials: A review. Journal of Composites Science, 6(12), 373.
  • 6. Xanthopoulou, E., Chrysafi, I., Polychronidis, P., Zamboulis, A. & Bikiaris, D.N. (2023). Evaluation of eco-friendly hemp-fiber-reinforced recycled HDPE composites. Journal of Composites Science, 7(4), 138.
  • 7. Rajendran, S., Shanmugam, V., Palani, G., Marimuthu, U., Veerasimman, A., Korniejenko, K., Oliinyk, I., Trilaksana, H. & Sundaram, V. (2024). Investigation on erosion resistance in polyester–jute composites with red mud particulate: Impact of fibre treatment and particulate addition. Polymers, 16(19), 2793.
  • 8. Adin, H., Adin, M.Ş. (2022). Effect of particles on tensile and bending properties of jute epoxy composites. Materials Testing, 64(3), 401-411.
  • 9. Li, M., Pu, Y., Thomas, V.M., Yoo, C.G., Ozcan, S., Deng, Y., Nelson, K. & Ragauskas, A.J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B, 200, 108254.
  • 10. Mishra, T., Mandal, P., Rout, A.K. & Sahoo, D. (2022). A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Composites Part C: Open Access, 9, 100298.
  • 11. Rajbhar, S., Alam, S. & Srivastava, R. (2016). Fabrication & characterization of animal hair and human hair reinforced epoxy composite. International Journal of Scientific Processes Research and Application (IJSPRA), 2(2), 18-22.
  • 12. Kumar, N., Singh, A. & Ranjan, R. (2019). Fabrication and mechanical characterization of horse hair (HH) reinforced polypropylene (PP) composites. Materials Today: Proceedings, 19, 622-625.
  • 13. Kumar, N., Singh, A., Debnath, K. & Ranjan, R. (2020). Mechanical characterization of animal fibre-based composites. Indian Journal of Fibre & Textile Research, 45, 293-297.
  • 14. Sam, A.R.M., Usman, J., Akbar, S. & Yusoff, I.M. (2016). Properties of mortar reinforced with natural horse hair and kenaf fibres. Malaysian Journal of Civil Engineering, 28(2), 300-314.
  • 15. Ratna, S. & Misra, S. (2017). An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites. 2nd International Conference on Condensed Matter and Applied Physics (ICC), 1953, 090010-1-090010-4.
  • 16. Singhi A. & Devaraj, V. (2017). The tribological and mechanical behaviour of horsehair strengthened composite. IJSRD-International Journal for Scientific Research & Development, 5(9), 2321-0613.
  • 17. Conzatti, L., Giunco, F., Stagnaro, P., Patrucco, A., Tonin, C., Marano, C., Rink, M. & Marsano, E. (2014). Wool fibres functionalised with a silane-based coupling agent for reinforced polypropylene composites. Composites, Part A, 61, 51-59.
  • 18. Das, S. (2017). Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites, Carbohydrate Polymers, 172, 60-67.
  • 19. Baykus, O., Mutlu, A. & Doğan, M. (2016). The effect of pre-impregnation with maleated coupling agents on mechanical and water absorption properties of jute fabric reinforced polypropylene and polyethylene biocomposites. Journal of Composite Materials, 50(2), 257-267.
  • 20. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819.
  • 21. Costache, M.C., Jiang, D.D., & Wilkie, C.A. (2005). Thermal degradation of ethylene–vinyl acetate coplymer nanocomposites. Polymer, 46(18), 6947-6958.
  • 22. Gu, P., Zhang, J. (2022). Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylene–vinyl acetate copolymers. Iranian Polymer Journal, 31(8), 905-917.
  • 23. Kashif, M., Hamdani, S.T.A., Nawab, Y., Asghar, M.A., Umair, M., & Shaker, K. (2018). Optimization of 3D woven preform for improved mechanical performance. Journal of Industrial Textiles, 48(7), 1206-1227.

Mechanical Properties of LLDPE Composites Reinforced with Woven Horsehair Fabrics

Yıl 2025, Cilt: 40 Sayı: 1, 99 - 109, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665893

Öz

This study aims to enhance the mechanical properties of linear low-density polyethylene (LLDPE) based composites by utilizing fabrics woven from horse tail hair as reinforcement. The warp and weft thread comprised bundles containing 20 hairs each in fabric production. The warp density was kept constant while two different weft densities, 5 bundles/cm and 7 bundles/cm, were used. Plain and 2/1 twill were selected as the weave type. All fabrics, except for the reference sample, were coated with ethylene vinyl acetate (EVA). The coating increased the tensile strength of the composite in the weft direction by 11.69% compared to untreated fabrics. As the fabric’s weft density increased, the tensile and flexural strength of the composites in the weft direction improved. A slight decrease in tensile strength was observed in the composites with the 2/1 twill weaving structure compared to the plain weaving, while an increase in flexural strength was noted with the plain weaving structure.

Kaynakça

  • 1. Li, X., Tabil, L. G. & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A Review. Journal of Polymers and the Environment, 15, 25-33.
  • 2. Kerni, L., Singh, S., Patnaik, A. & Kumar, N. (2020). A review on natural fiber reinforced composites. Materials Today: Proceedings, 28, 1616-1621.
  • 3. Ganguly, A., Shankar, S., Das, A., Shukla, M., Swaroop, C. & Bhardwaj, T. (2022). Natural fibre reinforced composites: A review based on additive manufacturing routes and biodegradability perspective. Materials Today: Proceedings, 62, 131-135.
  • 4. Jha, A., Thite, A., Bhardwaj, Y.K., Pant, H.J. & Choedhury, S.R. (2022). Radiation assisted development of linear low-density polyethylene/flax fibre composites by designing interface. Journal of Composite Materials, 56(28) 4259-4273.
  • 5. Dahal, R.K., Acharya, B. & Dutta, A. (2022). Mechanical, thermal, and acoustic properties of hemp and biocomposite materials: A review. Journal of Composites Science, 6(12), 373.
  • 6. Xanthopoulou, E., Chrysafi, I., Polychronidis, P., Zamboulis, A. & Bikiaris, D.N. (2023). Evaluation of eco-friendly hemp-fiber-reinforced recycled HDPE composites. Journal of Composites Science, 7(4), 138.
  • 7. Rajendran, S., Shanmugam, V., Palani, G., Marimuthu, U., Veerasimman, A., Korniejenko, K., Oliinyk, I., Trilaksana, H. & Sundaram, V. (2024). Investigation on erosion resistance in polyester–jute composites with red mud particulate: Impact of fibre treatment and particulate addition. Polymers, 16(19), 2793.
  • 8. Adin, H., Adin, M.Ş. (2022). Effect of particles on tensile and bending properties of jute epoxy composites. Materials Testing, 64(3), 401-411.
  • 9. Li, M., Pu, Y., Thomas, V.M., Yoo, C.G., Ozcan, S., Deng, Y., Nelson, K. & Ragauskas, A.J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B, 200, 108254.
  • 10. Mishra, T., Mandal, P., Rout, A.K. & Sahoo, D. (2022). A state-of-the-art review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle. Composites Part C: Open Access, 9, 100298.
  • 11. Rajbhar, S., Alam, S. & Srivastava, R. (2016). Fabrication & characterization of animal hair and human hair reinforced epoxy composite. International Journal of Scientific Processes Research and Application (IJSPRA), 2(2), 18-22.
  • 12. Kumar, N., Singh, A. & Ranjan, R. (2019). Fabrication and mechanical characterization of horse hair (HH) reinforced polypropylene (PP) composites. Materials Today: Proceedings, 19, 622-625.
  • 13. Kumar, N., Singh, A., Debnath, K. & Ranjan, R. (2020). Mechanical characterization of animal fibre-based composites. Indian Journal of Fibre & Textile Research, 45, 293-297.
  • 14. Sam, A.R.M., Usman, J., Akbar, S. & Yusoff, I.M. (2016). Properties of mortar reinforced with natural horse hair and kenaf fibres. Malaysian Journal of Civil Engineering, 28(2), 300-314.
  • 15. Ratna, S. & Misra, S. (2017). An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites. 2nd International Conference on Condensed Matter and Applied Physics (ICC), 1953, 090010-1-090010-4.
  • 16. Singhi A. & Devaraj, V. (2017). The tribological and mechanical behaviour of horsehair strengthened composite. IJSRD-International Journal for Scientific Research & Development, 5(9), 2321-0613.
  • 17. Conzatti, L., Giunco, F., Stagnaro, P., Patrucco, A., Tonin, C., Marano, C., Rink, M. & Marsano, E. (2014). Wool fibres functionalised with a silane-based coupling agent for reinforced polypropylene composites. Composites, Part A, 61, 51-59.
  • 18. Das, S. (2017). Mechanical properties of waste paper/jute fabric reinforced polyester resin matrix hybrid composites, Carbohydrate Polymers, 172, 60-67.
  • 19. Baykus, O., Mutlu, A. & Doğan, M. (2016). The effect of pre-impregnation with maleated coupling agents on mechanical and water absorption properties of jute fabric reinforced polypropylene and polyethylene biocomposites. Journal of Composite Materials, 50(2), 257-267.
  • 20. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819.
  • 21. Costache, M.C., Jiang, D.D., & Wilkie, C.A. (2005). Thermal degradation of ethylene–vinyl acetate coplymer nanocomposites. Polymer, 46(18), 6947-6958.
  • 22. Gu, P., Zhang, J. (2022). Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylene–vinyl acetate copolymers. Iranian Polymer Journal, 31(8), 905-917.
  • 23. Kashif, M., Hamdani, S.T.A., Nawab, Y., Asghar, M.A., Umair, M., & Shaker, K. (2018). Optimization of 3D woven preform for improved mechanical performance. Journal of Industrial Textiles, 48(7), 1206-1227.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tekstil Bilimi
Bölüm Makaleler
Yazarlar

Sümeyye Üstüntağ 0000-0002-2625-4063

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 2 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Üstüntağ, S. (2025). Mechanical Properties of LLDPE Composites Reinforced with Woven Horsehair Fabrics. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 99-109. https://doi.org/10.21605/cukurovaumfd.1665893