Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil Hidrojen Üretimi için Seçici Lazer Sinterleme Yoluyla Elektrotların Eklemeli İmalatının Performans Analizi

Yıl 2025, Cilt: 40 Sayı: 1, 111 - 126, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665920

Öz

Standart elektrotlar tasarım esnekliği, üretim süresi, maliyet, malzeme israfı ve özelleştirme açısından sınırlamalara sahiptir. Eklemeli imalat tekniği bu engelleri aşarak elektrokimyasal bileşenlerin üretiminde verimli, uygun maliyetli ve çevre dostu bir yaklaşım sunar. Bu çalışma, acil durum uygulamalarına ve prototip geliştirmeye odaklanarak yeşil hidrojen üretimi için elektrot üretmek amacıyla seçici lazer sinterlemenin kullanılabilirliğini araştırmaktadır. Alkali elektroliz için petek yapılı bir metal katot 3 boyutlu olarak yazdırılır ve çekme dayanımı açısından test edilmiştir. Döngüsel voltammetri, doğrusal tarama voltammetrisi ve kronoamperometri dahil olmak üzere elektrokimyasal yöntemler, grafit ve platin elektrotlara karşı katalitik performansını değerlendirilmiştir. 30 dakikalık bir elektroliz süresi için, seçici lazer sinterleme ile üretilen katot elektrotları için hidrojen gazı hacmi değerleri @ 2,4, 2,7 ve 3 V sırasıyla 10,5, 19,75 ve 28,5 mL'dir. Sonuçlar, literatüre kıyasla üstün performans göstermektedir. Ayrıca, hidrojen üretim verimliliği açısından rüzgar türbini modelleri (NACA12, NACA15, NACA18) analiz edilmiş ve NACA12'nin orta ila yüksek rüzgar hızlarında en etkili olduğu kanıtlanmıştır.

Kaynakça

  • 1. Al-Orabi, A.M., Osman, M.G. & Sedhom, B.E. (2023). Analysis of the economic and technological viability of producing green hydrogen with renewable energy sources in a variety of climates to reduce CO2 emissions: A case study in Egypt. Applied Energy, 338, 120958.
  • 2. Liu, J., Zhou, Y., Yang, H. & Wu, H. (2022). Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis. Applied Energy, 321, 119312.
  • 3. Hurtubia, B. & Sauma, E. (2021). Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity. Applied Energy, 304, 117739.
  • 4. Qiu, R., Zhang, H., Wang, G., Liang, Y. & Yan, J. (2023). Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid. Applied Energy, 350, 121716.
  • 5. Williams, L. & Wang, Y. (2024). A distributed renewable power system with hydrogen generation and storage for an island. Applied Energy, 358, 122500.
  • 6. Dwivedi, S., Dixit, A.R., Das, A.K. & Nag, A. (2023). A novel additive texturing of stainless steel 316l through binder jetting additive manufacturing. International Journal of Precision Engineering and Manufacturing- Green Technology, 10(6), 1605-1613.
  • 7. Lee, J., Kim, H.-C., Choi, J.-W. & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 373-383.
  • 8. Hossain, M.J., Tabatabaei, B.T., Kiki, M. & Choi, J.-W. (2024). Additive manufacturing of sensors: a comprehensive review. International Journal of Precision Engineering and Manufacturing-Green Technology.
  • 9. Ko, H., Moon, S.K. & Hwang, J. (2015). Design for additive manufacturing in customized products. International Journal of Precision Engineering and Manufacturing, 16(11), 2369-2375.
  • 10. Ahn, D.-G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 381-395.
  • 11. Chua, Z.Y., Ahn, I.H. & Moon, S.K. (2017). Process monitoring and inspection systems in metal additive manufacturing: Status and applications. International Journal of Precision Engineering and Manufacturing- Green Technology, 4(2), 235-245.
  • 12. Kahhal, P., Jo, Y.-K. & Park, S.-H. (2023). Recent progress in remanufacturing technologies using metal additive manufacturing processes and surface treatment. International Journal of Precision Engineering and Manufacturing-Green Technology.
  • 13. Rosenthal, S., Hahn, M., Tekkaya, A.E., Platt, S., Kleszczynski, S. & Witt, G. (2022). Speeding up additive manufacturing by means of forming for sheet components with core structures. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(4), 1021-1034.
  • 14. Chu, T., Park, S. & Fu, K. (Kelvin). (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy, 3, 424-439.
  • 15. Park, S., Jin, H. & Yun, Y.S. (2020). Advances in the design of 3D‐structured electrode materials for lithium‐metal anodes. Advanced Materials, 32, 2002193.
  • 16. Chabi, S., Peng, C., Hu, D. & Zhu, Y. (2014). Ideal three‐dimensional electrode structures for electrochemical energy storage. Advanced Materials, 26, 2440-2445.
  • 17. Arenas, L.F., Ponce De León, C. & Walsh, F.C. (2019). Three-dimensional porous metal electrodes: Fabrication, characterisation and use. Current Opinion in Electrochemistry, 16, 1-9.
  • 18. Stojić, D. Lj., Marčeta, M.P., Sovilj, S.P. & Miljanić, Š. S. (2003). Hydrogen generation from water electrolysis-possibilities of energy saving. Journal of Power Sources, 118, 315-319.
  • 19. Rodríguez, J. & Amores, E. (2020). CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production. Processes, 8, 1634.
  • 20. Fatouh, M., Shedid, M.H. & Elshokary, S. (2013). Effect of operating and geometric parameters on hydrogen production from an alkali electrolyzer. International Journal on Power Engineering and Energy.
  • 21. Gillespie, M.I. & Kriek, R.J. (2017). Hydrogen production from a rectangular horizontal filter press divergent electrode-flow-through (DEFT™) alkaline electrolysis stack. Journal of Power Sources, 372, 252-259.
  • 22. González-Buch, C., Herraiz-Cardona, I., Ortega, E., García-Antón, J. & Pérez-Herranz, V. (2016). Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. Journal of Applied Electrochemistry, 46, 791-803.
  • 23. Lim, C.W. (2017). Design and manufacture of small-scale wind turbine simulator to emulate torque response of MW wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(4), 409-418.
  • 24. Sung, C.-M. & Han, M.-C. (2016). Design and performance evaluation of hinge type pitch control system in small-size wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 335-341.
  • 25. Kim, S.-H. & Suh, K. (2020). Experimental and numerical investigation on power characteristics of 300 W class horizontal axis wind turbine with wave winding type AFPM generator. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(4), 837-848.
  • 26. Chen, Y.-J., Huang, G.-Y., Shiah, Y.C. & Tsai, Y.-L. (2020). Performance prediction for small horizontal axis wind turbine (HAWT) by integrated theory and experimental verifications. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 131-140.
  • 27. Hang, W.X., Tong, C.W., Hoe, W.K., Chin-Tsan, W., Huat, S.L., Chew, P.S. & Hin, L.S. (2018). Preliminary assessment of optimized accessorial roof shape for performance of wind turbine mounted on eco-roof system. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 375-385.
  • 28. Park, S., Han, G.D., Koo, J., Choi, H.J. & Shim, J.H. (2019). Profitable production of stable electrical power using wind-battery hybrid power systems: a case study from Mt. Taegi, South Korea. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(5), 919-930.
  • 29. Chi, J. & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39, 390-394.
  • 30. Ibáñez-Rioja, A., Järvinen, L., Puranen, P., Kosonen, A., Ruuskanen, V., Hynynen, K., et al. (2023). Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control. Applied Energy, 345, 121277.
  • 31. Kovač, A., Marciuš, D. & Budin, L. (2019). Solar hydrogen production via alkaline water electrolysis. International Journal of Hydrogen Energy, 44, 9841-9848.
  • 32. Hassan, Q., Sameen, A.Z., Salman, H.M. & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy, 48, 34299-34315.
  • 33. Belmili, H., Cheikh, R., Smail, T., Seddaoui, N. & Biara, R.W. (2017). Study, design and manufacturing of hybrid vertical axis Savonius wind turbine for urban architecture. Energy Procedia, 136, 330-335.
  • 34. Shyu, L.S., Lee, C.H., Hsiao, Y.C., Shih, T.M., Chang, C.C. & Wang, D.Y. (2012). High-efficiency 4kW VAWT design and development. Advanced Materials Research, 512-515, 617-622.
  • 35. Loganathan, B., Chowdhury, H., Mustary, I., Rana, M.M. & Alam, F. (2019). Design of a micro wind turbine and its economic feasibility study for residential power generation in built-up areas. Energy Procedia, 160, 812-819.
  • 36. Alaskari, M., Abdullah, O. & Majeed, M.H. (2019). Analysis of wind turbine using QBlade software. IOP Conference Series: Materials Science and Engineering, 518, 032020.
  • 37. Bak, C. (2007). Sensitivity of key parameters in aerodynamic wind turbine rotor design on power and energy performance. Journal of Physics: Conference Series, 75, 012008.
  • 38. Gupta, A., Abderrahmane, H. A. & Janajreh, I. (2024). Flow analysis and sensitivity study of vertical-axis wind turbine under variable pitching. Applied Energy, 358, 122648.
  • 39. Jang, H., Hwang, Y., Paek, I. & Lim, S. (2021). Performance evaluation and validation of H-darrieus small vertical axis wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(6), 1687-1697.
  • 40. Rezaeiha, A., Kalkman, I. & Blocken, B. (2017). Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy, 197, 132-150.
  • 41. Saeidi, D., Sedaghat, A., Alamdari, P. & Alemrajabi, A.A. (2013). Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines. Applied Energy, 101, 765-775.
  • 42. Seyedzavvar, M. & Boğa, C. (2023). A study on the effects of internal architecture on the mechanical properties and mixed-mode fracture behavior of 3D printed CaCO3/ABS nanocomposite samples. Rapid Prototyping Journal, 29, 185-206.
  • 43. Seyedzavvar, M. & Boğa, C. (2022). Investigation on the effects of printing pattern on the load carrying capacity of 3D printed U-notched samples. Meccanica, 57, 1575-1590.
  • 44. Güllü, E., Doğru Mert, B., Nazligul, H., Demirdelen, T. & Gurdal, Y. (2022). Experimental and theoretical study: Design and implementation of a floating photovoltaic system for hydrogen production. International Journal of Energy Research, 46, 5083-5098.
  • 45. Kaya, M.F., Demir, N., Albawabiji, M.S. & Taş, M. (2017). Investigation of alkaline water electrolysis performance for different cost effective electrodes under magnetic field. International Journal of Hydrogen Energy, 42, 17583-17592.
  • 46. Koca, M.B., Gümüşgöz Çelik, G., Kardaş, G. & Yazıcı, B. (2019). NiGa modified carbon-felt cathode for hydrogen production. International Journal of Hydrogen Energy, 44, 14157-14163.
  • 47. Sawadogo Adam, Y., Telli, E., Farsak, M. & Kardaş, G. (2023). Hydrogen production activity of nickel deposited graphite electrodes doped with CoW and CoIr nanoparticles. International Journal of Hydrogen Energy, 48, 31844-31854.
  • 48. Chakik, F.E., Kaddami, M. & Mikou, M. (2017). Effect of operating parameters on hydrogen production by electrolysis of water. International Journal of Hydrogen Energy, 42, 25550-25557.

Performance Analysis of Additive Manufacturing of Electrodes via Selective Laser Sintering for Green Hydrogen Production

Yıl 2025, Cilt: 40 Sayı: 1, 111 - 126, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665920

Öz

Standard electrodes have limitations in design flexibility, production time, cost, material waste, and customization. Additive manufacturing overcomes these barriers, offering an efficient, cost-effective, and environmentally friendly approach to manufacturing electrochemical components. This study explores the usability of selective laser sintering for producing electrodes for green hydrogen production, focusing on emergency applications and prototype development. A honeycomb-structured metal cathode for alkaline electrolysis is 3D-printed and tested for tensile strength. Electrochemical methods, including cyclic voltammetry, linear sweep voltammetry, and chronoamperometry, evaluate its catalytic performance against graphite and platinum electrodes. For a 30-minute electrolysis period, the volume of hydrogen gas values for selective laser sintering manufactured cathode electrodes @ 2.4, 2.7, and 3 V are 10.5, 19.75, and 28.5 mL, respectively. Results show superior performance compared to literature. Additionally, wind turbine models (NACA12, NACA15, NACA18) are analyzed for hydrogen production efficiency, with NACA12 proving most effective at moderate to high wind speeds.

Kaynakça

  • 1. Al-Orabi, A.M., Osman, M.G. & Sedhom, B.E. (2023). Analysis of the economic and technological viability of producing green hydrogen with renewable energy sources in a variety of climates to reduce CO2 emissions: A case study in Egypt. Applied Energy, 338, 120958.
  • 2. Liu, J., Zhou, Y., Yang, H. & Wu, H. (2022). Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis. Applied Energy, 321, 119312.
  • 3. Hurtubia, B. & Sauma, E. (2021). Economic and environmental analysis of hydrogen production when complementing renewable energy generation with grid electricity. Applied Energy, 304, 117739.
  • 4. Qiu, R., Zhang, H., Wang, G., Liang, Y. & Yan, J. (2023). Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid. Applied Energy, 350, 121716.
  • 5. Williams, L. & Wang, Y. (2024). A distributed renewable power system with hydrogen generation and storage for an island. Applied Energy, 358, 122500.
  • 6. Dwivedi, S., Dixit, A.R., Das, A.K. & Nag, A. (2023). A novel additive texturing of stainless steel 316l through binder jetting additive manufacturing. International Journal of Precision Engineering and Manufacturing- Green Technology, 10(6), 1605-1613.
  • 7. Lee, J., Kim, H.-C., Choi, J.-W. & Lee, I. H. (2017). A review on 3D printed smart devices for 4D printing. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 373-383.
  • 8. Hossain, M.J., Tabatabaei, B.T., Kiki, M. & Choi, J.-W. (2024). Additive manufacturing of sensors: a comprehensive review. International Journal of Precision Engineering and Manufacturing-Green Technology.
  • 9. Ko, H., Moon, S.K. & Hwang, J. (2015). Design for additive manufacturing in customized products. International Journal of Precision Engineering and Manufacturing, 16(11), 2369-2375.
  • 10. Ahn, D.-G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 381-395.
  • 11. Chua, Z.Y., Ahn, I.H. & Moon, S.K. (2017). Process monitoring and inspection systems in metal additive manufacturing: Status and applications. International Journal of Precision Engineering and Manufacturing- Green Technology, 4(2), 235-245.
  • 12. Kahhal, P., Jo, Y.-K. & Park, S.-H. (2023). Recent progress in remanufacturing technologies using metal additive manufacturing processes and surface treatment. International Journal of Precision Engineering and Manufacturing-Green Technology.
  • 13. Rosenthal, S., Hahn, M., Tekkaya, A.E., Platt, S., Kleszczynski, S. & Witt, G. (2022). Speeding up additive manufacturing by means of forming for sheet components with core structures. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(4), 1021-1034.
  • 14. Chu, T., Park, S. & Fu, K. (Kelvin). (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy, 3, 424-439.
  • 15. Park, S., Jin, H. & Yun, Y.S. (2020). Advances in the design of 3D‐structured electrode materials for lithium‐metal anodes. Advanced Materials, 32, 2002193.
  • 16. Chabi, S., Peng, C., Hu, D. & Zhu, Y. (2014). Ideal three‐dimensional electrode structures for electrochemical energy storage. Advanced Materials, 26, 2440-2445.
  • 17. Arenas, L.F., Ponce De León, C. & Walsh, F.C. (2019). Three-dimensional porous metal electrodes: Fabrication, characterisation and use. Current Opinion in Electrochemistry, 16, 1-9.
  • 18. Stojić, D. Lj., Marčeta, M.P., Sovilj, S.P. & Miljanić, Š. S. (2003). Hydrogen generation from water electrolysis-possibilities of energy saving. Journal of Power Sources, 118, 315-319.
  • 19. Rodríguez, J. & Amores, E. (2020). CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production. Processes, 8, 1634.
  • 20. Fatouh, M., Shedid, M.H. & Elshokary, S. (2013). Effect of operating and geometric parameters on hydrogen production from an alkali electrolyzer. International Journal on Power Engineering and Energy.
  • 21. Gillespie, M.I. & Kriek, R.J. (2017). Hydrogen production from a rectangular horizontal filter press divergent electrode-flow-through (DEFT™) alkaline electrolysis stack. Journal of Power Sources, 372, 252-259.
  • 22. González-Buch, C., Herraiz-Cardona, I., Ortega, E., García-Antón, J. & Pérez-Herranz, V. (2016). Study of the catalytic activity of 3D macroporous Ni and NiMo cathodes for hydrogen production by alkaline water electrolysis. Journal of Applied Electrochemistry, 46, 791-803.
  • 23. Lim, C.W. (2017). Design and manufacture of small-scale wind turbine simulator to emulate torque response of MW wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(4), 409-418.
  • 24. Sung, C.-M. & Han, M.-C. (2016). Design and performance evaluation of hinge type pitch control system in small-size wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 335-341.
  • 25. Kim, S.-H. & Suh, K. (2020). Experimental and numerical investigation on power characteristics of 300 W class horizontal axis wind turbine with wave winding type AFPM generator. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(4), 837-848.
  • 26. Chen, Y.-J., Huang, G.-Y., Shiah, Y.C. & Tsai, Y.-L. (2020). Performance prediction for small horizontal axis wind turbine (HAWT) by integrated theory and experimental verifications. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 131-140.
  • 27. Hang, W.X., Tong, C.W., Hoe, W.K., Chin-Tsan, W., Huat, S.L., Chew, P.S. & Hin, L.S. (2018). Preliminary assessment of optimized accessorial roof shape for performance of wind turbine mounted on eco-roof system. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(3), 375-385.
  • 28. Park, S., Han, G.D., Koo, J., Choi, H.J. & Shim, J.H. (2019). Profitable production of stable electrical power using wind-battery hybrid power systems: a case study from Mt. Taegi, South Korea. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(5), 919-930.
  • 29. Chi, J. & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39, 390-394.
  • 30. Ibáñez-Rioja, A., Järvinen, L., Puranen, P., Kosonen, A., Ruuskanen, V., Hynynen, K., et al. (2023). Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control. Applied Energy, 345, 121277.
  • 31. Kovač, A., Marciuš, D. & Budin, L. (2019). Solar hydrogen production via alkaline water electrolysis. International Journal of Hydrogen Energy, 44, 9841-9848.
  • 32. Hassan, Q., Sameen, A.Z., Salman, H.M. & Jaszczur, M. (2023). Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy. International Journal of Hydrogen Energy, 48, 34299-34315.
  • 33. Belmili, H., Cheikh, R., Smail, T., Seddaoui, N. & Biara, R.W. (2017). Study, design and manufacturing of hybrid vertical axis Savonius wind turbine for urban architecture. Energy Procedia, 136, 330-335.
  • 34. Shyu, L.S., Lee, C.H., Hsiao, Y.C., Shih, T.M., Chang, C.C. & Wang, D.Y. (2012). High-efficiency 4kW VAWT design and development. Advanced Materials Research, 512-515, 617-622.
  • 35. Loganathan, B., Chowdhury, H., Mustary, I., Rana, M.M. & Alam, F. (2019). Design of a micro wind turbine and its economic feasibility study for residential power generation in built-up areas. Energy Procedia, 160, 812-819.
  • 36. Alaskari, M., Abdullah, O. & Majeed, M.H. (2019). Analysis of wind turbine using QBlade software. IOP Conference Series: Materials Science and Engineering, 518, 032020.
  • 37. Bak, C. (2007). Sensitivity of key parameters in aerodynamic wind turbine rotor design on power and energy performance. Journal of Physics: Conference Series, 75, 012008.
  • 38. Gupta, A., Abderrahmane, H. A. & Janajreh, I. (2024). Flow analysis and sensitivity study of vertical-axis wind turbine under variable pitching. Applied Energy, 358, 122648.
  • 39. Jang, H., Hwang, Y., Paek, I. & Lim, S. (2021). Performance evaluation and validation of H-darrieus small vertical axis wind turbine. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(6), 1687-1697.
  • 40. Rezaeiha, A., Kalkman, I. & Blocken, B. (2017). Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy, 197, 132-150.
  • 41. Saeidi, D., Sedaghat, A., Alamdari, P. & Alemrajabi, A.A. (2013). Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines. Applied Energy, 101, 765-775.
  • 42. Seyedzavvar, M. & Boğa, C. (2023). A study on the effects of internal architecture on the mechanical properties and mixed-mode fracture behavior of 3D printed CaCO3/ABS nanocomposite samples. Rapid Prototyping Journal, 29, 185-206.
  • 43. Seyedzavvar, M. & Boğa, C. (2022). Investigation on the effects of printing pattern on the load carrying capacity of 3D printed U-notched samples. Meccanica, 57, 1575-1590.
  • 44. Güllü, E., Doğru Mert, B., Nazligul, H., Demirdelen, T. & Gurdal, Y. (2022). Experimental and theoretical study: Design and implementation of a floating photovoltaic system for hydrogen production. International Journal of Energy Research, 46, 5083-5098.
  • 45. Kaya, M.F., Demir, N., Albawabiji, M.S. & Taş, M. (2017). Investigation of alkaline water electrolysis performance for different cost effective electrodes under magnetic field. International Journal of Hydrogen Energy, 42, 17583-17592.
  • 46. Koca, M.B., Gümüşgöz Çelik, G., Kardaş, G. & Yazıcı, B. (2019). NiGa modified carbon-felt cathode for hydrogen production. International Journal of Hydrogen Energy, 44, 14157-14163.
  • 47. Sawadogo Adam, Y., Telli, E., Farsak, M. & Kardaş, G. (2023). Hydrogen production activity of nickel deposited graphite electrodes doped with CoW and CoIr nanoparticles. International Journal of Hydrogen Energy, 48, 31844-31854.
  • 48. Chakik, F.E., Kaddami, M. & Mikou, M. (2017). Effect of operating parameters on hydrogen production by electrolysis of water. International Journal of Hydrogen Energy, 42, 25550-25557.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji, Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Fırat Ekinci 0000-0002-4888-7881

Mehmet Erman Mert 0000-0002-0114-8707

Hüseyin Nazlıgül 0000-0003-3037-8568

Başak Doğru Mert 0000-0002-2270-9032

Burak Esenboğa 0000-0002-7777-259X

Abdurrahman Yavuzdeğer 0000-0001-8058-4672

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 18 Şubat 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Ekinci, F., Mert, M. E., Nazlıgül, H., Doğru Mert, B., vd. (2025). Performance Analysis of Additive Manufacturing of Electrodes via Selective Laser Sintering for Green Hydrogen Production. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 111-126. https://doi.org/10.21605/cukurovaumfd.1665920