Araştırma Makalesi
BibTex RIS Kaynak Göster

Küresel İklim Değişikliği ve İklim Göstergelerindeki Tarihsel Eğilimler

Yıl 2025, Cilt: 40 Sayı: 1, 127 - 140, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665929

Öz

İklim değişikliğinin temel nedeni, atmosferin fiziksel özelliklerini değiştiren ve iklimsel bozulmalara yol açan sera gazı emisyonlarının artmasıdır. Küresel ortalama sıcaklıkların artması, çiğ noktası sıcaklıklarının yükselmesine ve bağıl nemin azalmasına neden olmuştur. Bu çalışmada, 1970-2023 yılları arasında küresel iklim göstergelerindeki değişimler ayrıntılı olarak incelenmiş ve kuru termometre sıcaklığı (Tk), çiğ noktası sıcaklığı (Td), çiğ noktası depresyonu (DPD), özgül nem (w), bağıl nem (RH) ve yoğunluk (ρ) gibi kritik parametrelerdeki eğilimler analiz edilmiştir. Bulgular, iklim değişikliğinin hızla ilerlediğini, kuraklık ve şiddetli hava olaylarının olasılığını artırdığını gösteriyor. Ek olarak, gelecekteki çevresel ve sosyo-ekonomik uyum stratejileriyle ilgili acil eylem gerekliliği vurgulanmıştır. Bu çalışmada, küresel iklim değişikliğinin etkilerinin daha iyi anlaşılmasını ve uzun vadeli veriler ve iklim modellerine dayalı uygun politikaların geliştirilmesini amaçlamaktadır.

Kaynakça

  • 1. Intergovernmental Panel on Climate Change (IPCC), (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • 2. Bilgili, M., Tumse, S. & Nar, S. (2024). Comprehensive overview on the present state and evolution of global warming, climate change, greenhouse gasses and renewable energy. Arabian Journal for Science and Engineering, 49, 14503-14531.
  • 3. National Oceanic and Atmospheric Administration (NOAA), (2023). Greenhouse gases continued to increase rapidly in 2022. NOAA. https://www.noaa.gov/news-release/greenhouse-gases-continued-to- increase-rapidly-in-2022
  • 4. Intergovernmental Panel on Climate Change (IPCC), (2022). Climate change 2022: Mitigation of climate change. IPCC Sixth Assessment Report.
  • 5. Intergovernmental Panel on Climate Change (IPCC), (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • 6. Faquseh, H. & Grossi, G. (2024). Trend analysis of precipitation, temperature and snow water equivalent in Lombardy region, northern Italy. Sustainable Water Resources Management, 10(18), 1-15.
  • 7. Kliengchuay, W., Mingkhwan, R., Kiangkoo, N., Suwanmanee, S., Sahanavin, N., Kongpran, J., Wai Aung, H. & Tantrakarnapa, K. (2024). Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Scientific Reports, 14(7800).
  • 8. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W. & Medina-Elizade, M. (2010). Global surface temperature change. Reviews of Geophysics, 48(4), RG4004.
  • 9. Held, I.M. & Soden, B.J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686-5699.
  • 10. Dessler, A.E. (2010). A determination of the cloud feedback from climate variations over the past decade. Science, 330(6010), 1523-1527.
  • 11. Trenberth, K.E., Fasullo, J.T. & Smith, L. (2009). Trends and variability in column-integrated atmospheric water vapor. Climate Dynamics, 32(6), 741-758.
  • 12. Wang, J. & Gaffen, D.J. (2001). Late-twentieth-century climatology and trends of surface humidity and temperature in China. Journal of Climate, 14(22), 2843-2855.
  • 13. Dai, A. (2006). Recent climatology, variability, and trends in global surface humidity. Journal of Climate, 19(15), 3589-3606.
  • 14. Willett, K.M., Gillett, N.P., Jones, P.D. & Thorne, P.W. (2010). Recent changes in surface humidity: Development of the HadISDH dataset. Journal of Climate, 23(8), 1954-1973.
  • 15. Willett, K.M., Williams, C.N. Jr., Dunn, R.J.H., Thorne, P.W., Bell, S., de Podesta, M., Jones, P.D. & Parker, D.E. (2013). HadISDH: An updateable land surface specific humidity product for climate monitoring. Climate of the Past, 9(2), 657-677.
  • 16. Willett, K.M., Dunn, R.J.H., Thorne, P.W., Bell, S., de Podesta, M., Parker, D.E. & Jones, P.D. (2014). HadISDH: Land surface multi-variable humidity and temperature record for climate monitoring. Climate of the Past, 10(6), 1983-2006.
  • 17. Climate Reanalyzer. (n.d.). Monthly maps. University of Maine. Retrieved October 30, 2024, from https://climatereanalyzer.org/research_tools/monthly_maps/

Global Climate Change and Historical Trends in Climate Indicators

Yıl 2025, Cilt: 40 Sayı: 1, 127 - 140, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665929

Öz

The main cause of climate change is an increase in greenhouse gas emissions, which alters the physical characteristics of the atmosphere and causes climatic perturbations. Rising global mean temperatures have resulted in elevated dew point temperatures and diminished relative humidity. This study thoroughly examines the alterations in global climatic indicators from 1970 to 2023, analyzing trends in critical parameters like air dry bulb temperature (Tk), dew point temperature (Td), dew point depression (DPD), absolute humidity (w), relative humidity (RH), and density (ρ). The findings indicate that climate change is progressing rapidly, heightening the likelihood of drought and severe weather occurrences. In addition, the necessity for immediate action regarding future environmental and socio-economic adaptation strategies was underscored. In this study aims to enhance understanding of the impacts of global climate change and to develop suitable policies grounded in long-term data and climate models.

Kaynakça

  • 1. Intergovernmental Panel on Climate Change (IPCC), (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • 2. Bilgili, M., Tumse, S. & Nar, S. (2024). Comprehensive overview on the present state and evolution of global warming, climate change, greenhouse gasses and renewable energy. Arabian Journal for Science and Engineering, 49, 14503-14531.
  • 3. National Oceanic and Atmospheric Administration (NOAA), (2023). Greenhouse gases continued to increase rapidly in 2022. NOAA. https://www.noaa.gov/news-release/greenhouse-gases-continued-to- increase-rapidly-in-2022
  • 4. Intergovernmental Panel on Climate Change (IPCC), (2022). Climate change 2022: Mitigation of climate change. IPCC Sixth Assessment Report.
  • 5. Intergovernmental Panel on Climate Change (IPCC), (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  • 6. Faquseh, H. & Grossi, G. (2024). Trend analysis of precipitation, temperature and snow water equivalent in Lombardy region, northern Italy. Sustainable Water Resources Management, 10(18), 1-15.
  • 7. Kliengchuay, W., Mingkhwan, R., Kiangkoo, N., Suwanmanee, S., Sahanavin, N., Kongpran, J., Wai Aung, H. & Tantrakarnapa, K. (2024). Analyzing temperature, humidity, and precipitation trends in six regions of Thailand using innovative trend analysis. Scientific Reports, 14(7800).
  • 8. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W. & Medina-Elizade, M. (2010). Global surface temperature change. Reviews of Geophysics, 48(4), RG4004.
  • 9. Held, I.M. & Soden, B.J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686-5699.
  • 10. Dessler, A.E. (2010). A determination of the cloud feedback from climate variations over the past decade. Science, 330(6010), 1523-1527.
  • 11. Trenberth, K.E., Fasullo, J.T. & Smith, L. (2009). Trends and variability in column-integrated atmospheric water vapor. Climate Dynamics, 32(6), 741-758.
  • 12. Wang, J. & Gaffen, D.J. (2001). Late-twentieth-century climatology and trends of surface humidity and temperature in China. Journal of Climate, 14(22), 2843-2855.
  • 13. Dai, A. (2006). Recent climatology, variability, and trends in global surface humidity. Journal of Climate, 19(15), 3589-3606.
  • 14. Willett, K.M., Gillett, N.P., Jones, P.D. & Thorne, P.W. (2010). Recent changes in surface humidity: Development of the HadISDH dataset. Journal of Climate, 23(8), 1954-1973.
  • 15. Willett, K.M., Williams, C.N. Jr., Dunn, R.J.H., Thorne, P.W., Bell, S., de Podesta, M., Jones, P.D. & Parker, D.E. (2013). HadISDH: An updateable land surface specific humidity product for climate monitoring. Climate of the Past, 9(2), 657-677.
  • 16. Willett, K.M., Dunn, R.J.H., Thorne, P.W., Bell, S., de Podesta, M., Parker, D.E. & Jones, P.D. (2014). HadISDH: Land surface multi-variable humidity and temperature record for climate monitoring. Climate of the Past, 10(6), 1983-2006.
  • 17. Climate Reanalyzer. (n.d.). Monthly maps. University of Maine. Retrieved October 30, 2024, from https://climatereanalyzer.org/research_tools/monthly_maps/
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Muhammet Tokmakçı 0009-0009-9724-0249

Mehmet Bilgili 0000-0002-5339-6120

Engin Pınar 0000-0002-7484-8616

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 14 Şubat 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Tokmakçı, M., Bilgili, M., & Pınar, E. (2025). Küresel İklim Değişikliği ve İklim Göstergelerindeki Tarihsel Eğilimler. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 127-140. https://doi.org/10.21605/cukurovaumfd.1665929