Araştırma Makalesi
BibTex RIS Kaynak Göster

Aktivasyon Kimyasalı Türlerinin Metilen Mavisi Adsorpsiyonuna Etkilerinin İzoterm ve Kinetik Modelleri Kullanılarak İncelenmesi

Yıl 2025, Cilt: 40 Sayı: 1, 141 - 151, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665940

Öz

Bu çalışmada, bazik, nötr ve asidik olmak üzere sırasıyla KOH, ZnCl2, H3PO4 aktivasyon kimyasalları ile aktivasyon işlemine tabi tutulan atık zeytin çekirdeklerinden 3 farklı aktif karbon eldesi gerçekleştirilmiştir. Mevcut çalışma ile aktif karbon eldesinde kullanılan aktivasyon kimyasallarının türü ve tipinin metilen mavisi adsorpsiyon mekanizmasına etkilerinin belirlenmesi amaçlanmıştır. Sentezlenen aktif karbonlarla metilen mavisinin adsorpsiyon çalışmaları gerçekleştirilerek giderim mekanizmalarına ve kimyasına etkileri incelenmiştir. Elde edilen kinetik ve izoterm verileri ile de metilen mavisi giderimindeki mekanizmalar ve kirletici-adsorban ilişkileri belirlenmiştir. KOH aktivasyonunun aktif karbon yüzeyinde yüksek miktarda aktif bölge oluşumu sağladığı, ZnCl2 ve H3PO4 aktivasyonlarında ise aktif karbon yüzeyinde adsorpsiyona direnç gösteren bir tabaka varlığı olduğu tespit edilmiştir. Direnç tabakasının H3PO4 aktivasyonunda ise daha kalın olduğu ve metilen mavisi adsorpsiyonuna daha yüksek direnç gösterdiği belirlenmiştir. Ayrıca, üç aktivasyon kimyasalıyla da elde edilen aktif karbonlar ile kimyasal ve tersinir adsorpsiyon gerçekleştirildiği sonucuna ulaşılmıştır.

Kaynakça

  • 1. Weng, C.H. & Pan, Y.F. (2007). Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144(1), 355-362.
  • 2. El Qada, E.N., Allen, S.J. & Walker, G.M. (2006). Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124(1),103-110.
  • 3. Senthilkumaar, S., Varadarajan, P.R., Porkodi, K. & Subbhuraam, C.V. (2005). Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284(1), 78-82.
  • 4. Li, W., Mu, B. & Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157-170.
  • 5. Maiti, D., Mukhopadhyay, S. & Devi, P.S. (2017). Evaluation of mechanism on selective, rapid, and superior adsorption of congo red by reusable mesoporous α-Fe2O3 nanorods. ACS Sustainable Chemical Engineering, 5(12), 11255-67.
  • 6. Sharma, V., Vinoth Kumar, R., Pakshirajan, K. & Pugazhenthi, G. (2017). Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution. Powder Technology, 321, 259-269.
  • 7. Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M. & Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology, 99(17), 8441-4.
  • 8. Ahmad, A.L., Loh, M.M. & Aziz, J.A. (2007). Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption. Dyes and Pigments, 75(2), 263-272.
  • 9. Arulkumar, M., Sathishkumar, P. & Palvannan, T. (2011). Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. Journal of Hazardous Materials, 186(1), 827-834.
  • 10. Wang, J. & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620-640.
  • 11. Vargas, A.M.M., Cazetta, A.L., Kunita, M.H., Silva, T.L. & Almeida, V.C. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168(2), 722-730.
  • 12. Ayinla, R.T., Dennis, J.O., Zaid, H.M., Sanusi, Y.K., Usman, F. & Adebayo, L.L. (2019). A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of Cleaner Production, 229, 1427-1442.
  • 13. Kleszyk, P., Ratajczak, P., Skowron, P., Jagiello, J., Abbas, Q. & Frąckowiak, E. (2015). Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon, 81, 148-157.
  • 14. Gao, Y., Yue, Q., Gao, B. & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment, 746, 141094.
  • 15. Gil, R., Ruiz, B., Lozano, M. & Fuente, E. (2014). Influence of the pyrolysis step and the tanning process on KOH-activated carbons from biocollagenic wastes. Prospects as adsorbent for CO2 capture. Journal of Analytical and Applied Pyrolysis, 110, 194-204.
  • 16. Nowicki, P., Kazmierczak, J. & Pietrzak, R. (2015). Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder technology, 269, 312-319.
  • 17. Mousazadeh, B., Mohammadi, N. & Khosravi-Nikou, M.R. (2024). Synthesis and characterization of porous activated carbons derived from lotus nut and their performance for CO2 adsorption. International
  • Journal of Environmental Science and Technology, 21(6), 5379-5394. 18. Tounsadi, H., Khalidi, A., Abdennouri, M. & Barka, N. (2016). Activated carbon from Diplotaxis Harra biomass: Optimization of preparation conditions and heavy metal removal. Journal of the Taiwan Institute of Chemical Engineers, 59, 348-358.
  • 19. Chiu, Y.H. & Lin, L.Y. (2019). Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 101, 177-185.
  • 20. Mojoudi, N., Soleimani, M., Mirghaffari, N., Belver, C. & Bedia, J. (2019). Removal of phenol and phosphate from aqueous solutions using activated carbons prepared from oily sludge through physical and chemical activation. Water Science and Technology, 80(3), 575-586.
  • 21. Xi, Y., Yang, D., Qiu, X., Wang, H., Huang, J. & Li, Q. (2018). Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Industrial Crops and Products, 124, 747-754.
  • 22. Hapiz, A., Jawad, A.H., Wilson, L.D. & ALOthman, Z.A. (2024). High surface area activated carbon from a pineapple (ananas comosus) crown via microwave-ZnCl2 activation for crystal violet and methylene blue dye removal: adsorption optimization and mechanism. International Journal of Phytoremediation, 26(3), 324-338.
  • 23. Yaacoubi, F.E., Sekkouri, C., Ennaciri, K., Rabichi, I., Izghri, Z. & Baçaoui, A. (2024). Synthesis of composites from activated carbon based on olive stones and sodium alginate for the removal of methylene blue. International Journal of Biological Macromolecules, 254, 127706.
  • 24. Hashem, H.M., El-Maghrabey, M. & El-Shaheny, R. (2024). Inclusive study of peanut shells derived activated carbon as an adsorbent for removal of lead and methylene blue from water. Scientific Reports, 14(1), 13515.
  • 25. Dalmaz, A. & Si̇vri̇kaya Özak, S. (2024). Methylene blue dye efficient removal using activated carbon developed from waste cigarette butts: Adsorption, thermodynamic and kinetics. Fuel, 372, 132151.
  • 26. Hameed, B.H., Din, A.T.M. & Ahmad, A.L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3), 819-825.
  • 27. Nandi, B.K., Goswami, A. & Purkait, M.K. (2009). Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science, 42(3), 583-590.
  • 28. Xia, F., Ou, E., Wang, L. & Wang, J. (2008). Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight. Dyes and Pigments, 76(1), 76-81.
  • 29. Amin, N.K. (2009). Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 165(1), 52-62.
  • 30. Ho, Y.S., Chiang, T.H. & Hsueh, Y.M. (2005). Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochemistry, 40(1), 119-124.
  • 31. Kayranli, B. (2011). Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chemical Engineering Journal, 173(3), 782-791.
  • 32. Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57U(1), 385-470.
  • 33. Abbas, M. & Trari, M. (2020). Removal of methylene blue in aqueous solution by economic adsorbent derived from apricot stone activated carbon. Fibers Polymers, 21(4), 810-820.
  • 34. Pua, F., Sajab, M.S., Chia, C.H., Zakaria, S., Rahman, I.A. & Salit, M.S. (2013). Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions. Journal of Environmental Chemical Engineering, 1(3), 460-465.
  • 35. Agarwal, S. & Rani, A. (2017). Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 5(1), 526-538.
  • 36. Darwish, A.A.A., Rashad, M. & AL-Aoh, H.A. (2019). Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments, 160, 563-571.
  • 37. Khan, S.U., Islam, D.T., Farooqi, I.H., Ayub, S. & Basheer, F. (2019). Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Safety and Environmental Protection, 122, 118-130.
  • 38. Stähelin, P.M., Valério, A., Guelli Ulson de Souza, S.M. de A, da Silva, A., Borges Valle, J.A. & Ulson de Souza, A.A. (2018). Benzene and toluene removal from synthetic automotive gasoline by mono and bicomponent adsorption process. Fuel, 231, 45-52.
  • 39. Gunasundari, E. (2017). Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). Journal of Industrial and Engineering Chemistry, 56, 129-144.
  • 40. Xia, Y., Yang, T., Zhu, N., Li, D., Chen, Z. & Lang, Q.(2019). Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis. Bioresource Technology, 288, 121593.
  • 41. Sanou, I., Bamogo, H., Sanou, A., Ouedraogo, M., Saadi, L. & Waqif, M. (2024). Adsorption of methylene blue in aqueous medium by activated carbon from peanut shells. Chemistry Africa, 7(5), 2777-2794.
  • 42. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-59.
  • 43. Vimonses, V., Lei, S., Jin, B., Chow, C.W.K. & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2), 354-364.
  • 44. Wu, C.H. (2007). Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 144(1), 93-100.
  • 45. Chen, X., Hossain, M.F., Duan, C., Lu, J., Tsang, Y.F. & Islam, M.S. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 307, 135545.
  • 46. Dimbo, D., Abewaa, M., Adino, E., Mengistu, A., Takele, T. & Oro, A. (2024). Methylene blue adsorption from aqueous solution using activated carbon of spathodea campanulata. Results in Engineering, 21, 101910.

Investigation Effects of Activating Agent Types on Methylene Blue Adsorption with Using Isotherm and Kinetic Models

Yıl 2025, Cilt: 40 Sayı: 1, 141 - 151, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665940

Öz

Three different activated carbons were obtained from waste olive stones through activation with KOH (basic), ZnCl₂ (neutral), and H₃PO₄ (acidic), respectively. This study aimed to specify the effects of various activating agent types on the methylene blue dye adsorption mechanism. Adsorption experiments of methylene blue were conducted using these activated carbons to investigate their effects on removal mechanisms and adsorption chemistry. The kinetic and isotherm data obtained were used to determine the removal mechanisms of methylene blue and the pollutant–adsorbent interactions. It was found that KOH activation led to the formation of a high number of active sites on the activated carbon surface, whereas ZnCl₂ and H₃PO₄ activation resulted in the presence of an adsorption-resistant layer on the surface. This resistance layer was observed to be thicker in H₃PO₄ activation, leading to greater resistance to methylene blue adsorption. Additionally, it was concluded that the activated carbons obtained with all three activation chemicals exhibited both chemical and reversible adsorption.

Kaynakça

  • 1. Weng, C.H. & Pan, Y.F. (2007). Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144(1), 355-362.
  • 2. El Qada, E.N., Allen, S.J. & Walker, G.M. (2006). Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal, 124(1),103-110.
  • 3. Senthilkumaar, S., Varadarajan, P.R., Porkodi, K. & Subbhuraam, C.V. (2005). Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. Journal of Colloid and Interface Science, 284(1), 78-82.
  • 4. Li, W., Mu, B. & Yang, Y. (2019). Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresource Technology, 277, 157-170.
  • 5. Maiti, D., Mukhopadhyay, S. & Devi, P.S. (2017). Evaluation of mechanism on selective, rapid, and superior adsorption of congo red by reusable mesoporous α-Fe2O3 nanorods. ACS Sustainable Chemical Engineering, 5(12), 11255-67.
  • 6. Sharma, V., Vinoth Kumar, R., Pakshirajan, K. & Pugazhenthi, G. (2017). Integrated adsorption-membrane filtration process for antibiotic removal from aqueous solution. Powder Technology, 321, 259-269.
  • 7. Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M. & Addou, A. (2008). Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technology, 99(17), 8441-4.
  • 8. Ahmad, A.L., Loh, M.M. & Aziz, J.A. (2007). Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption. Dyes and Pigments, 75(2), 263-272.
  • 9. Arulkumar, M., Sathishkumar, P. & Palvannan, T. (2011). Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. Journal of Hazardous Materials, 186(1), 827-834.
  • 10. Wang, J. & Wang, S. (2016). Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. Journal of Environmental Management, 182, 620-640.
  • 11. Vargas, A.M.M., Cazetta, A.L., Kunita, M.H., Silva, T.L. & Almeida, V.C. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168(2), 722-730.
  • 12. Ayinla, R.T., Dennis, J.O., Zaid, H.M., Sanusi, Y.K., Usman, F. & Adebayo, L.L. (2019). A review of technical advances of recent palm bio-waste conversion to activated carbon for energy storage. Journal of Cleaner Production, 229, 1427-1442.
  • 13. Kleszyk, P., Ratajczak, P., Skowron, P., Jagiello, J., Abbas, Q. & Frąckowiak, E. (2015). Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon, 81, 148-157.
  • 14. Gao, Y., Yue, Q., Gao, B. & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment, 746, 141094.
  • 15. Gil, R., Ruiz, B., Lozano, M. & Fuente, E. (2014). Influence of the pyrolysis step and the tanning process on KOH-activated carbons from biocollagenic wastes. Prospects as adsorbent for CO2 capture. Journal of Analytical and Applied Pyrolysis, 110, 194-204.
  • 16. Nowicki, P., Kazmierczak, J. & Pietrzak, R. (2015). Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder technology, 269, 312-319.
  • 17. Mousazadeh, B., Mohammadi, N. & Khosravi-Nikou, M.R. (2024). Synthesis and characterization of porous activated carbons derived from lotus nut and their performance for CO2 adsorption. International
  • Journal of Environmental Science and Technology, 21(6), 5379-5394. 18. Tounsadi, H., Khalidi, A., Abdennouri, M. & Barka, N. (2016). Activated carbon from Diplotaxis Harra biomass: Optimization of preparation conditions and heavy metal removal. Journal of the Taiwan Institute of Chemical Engineers, 59, 348-358.
  • 19. Chiu, Y.H. & Lin, L.Y. (2019). Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 101, 177-185.
  • 20. Mojoudi, N., Soleimani, M., Mirghaffari, N., Belver, C. & Bedia, J. (2019). Removal of phenol and phosphate from aqueous solutions using activated carbons prepared from oily sludge through physical and chemical activation. Water Science and Technology, 80(3), 575-586.
  • 21. Xi, Y., Yang, D., Qiu, X., Wang, H., Huang, J. & Li, Q. (2018). Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Industrial Crops and Products, 124, 747-754.
  • 22. Hapiz, A., Jawad, A.H., Wilson, L.D. & ALOthman, Z.A. (2024). High surface area activated carbon from a pineapple (ananas comosus) crown via microwave-ZnCl2 activation for crystal violet and methylene blue dye removal: adsorption optimization and mechanism. International Journal of Phytoremediation, 26(3), 324-338.
  • 23. Yaacoubi, F.E., Sekkouri, C., Ennaciri, K., Rabichi, I., Izghri, Z. & Baçaoui, A. (2024). Synthesis of composites from activated carbon based on olive stones and sodium alginate for the removal of methylene blue. International Journal of Biological Macromolecules, 254, 127706.
  • 24. Hashem, H.M., El-Maghrabey, M. & El-Shaheny, R. (2024). Inclusive study of peanut shells derived activated carbon as an adsorbent for removal of lead and methylene blue from water. Scientific Reports, 14(1), 13515.
  • 25. Dalmaz, A. & Si̇vri̇kaya Özak, S. (2024). Methylene blue dye efficient removal using activated carbon developed from waste cigarette butts: Adsorption, thermodynamic and kinetics. Fuel, 372, 132151.
  • 26. Hameed, B.H., Din, A.T.M. & Ahmad, A.L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3), 819-825.
  • 27. Nandi, B.K., Goswami, A. & Purkait, M.K. (2009). Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science, 42(3), 583-590.
  • 28. Xia, F., Ou, E., Wang, L. & Wang, J. (2008). Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight. Dyes and Pigments, 76(1), 76-81.
  • 29. Amin, N.K. (2009). Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 165(1), 52-62.
  • 30. Ho, Y.S., Chiang, T.H. & Hsueh, Y.M. (2005). Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochemistry, 40(1), 119-124.
  • 31. Kayranli, B. (2011). Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chemical Engineering Journal, 173(3), 782-791.
  • 32. Freundlich, H. (1907). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57U(1), 385-470.
  • 33. Abbas, M. & Trari, M. (2020). Removal of methylene blue in aqueous solution by economic adsorbent derived from apricot stone activated carbon. Fibers Polymers, 21(4), 810-820.
  • 34. Pua, F., Sajab, M.S., Chia, C.H., Zakaria, S., Rahman, I.A. & Salit, M.S. (2013). Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions. Journal of Environmental Chemical Engineering, 1(3), 460-465.
  • 35. Agarwal, S. & Rani, A. (2017). Adsorption of resorcinol from aqueous solution onto CTAB/NaOH/flyash composites: Equilibrium, kinetics and thermodynamics. Journal of Environmental Chemical Engineering, 5(1), 526-538.
  • 36. Darwish, A.A.A., Rashad, M. & AL-Aoh, H.A. (2019). Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes and Pigments, 160, 563-571.
  • 37. Khan, S.U., Islam, D.T., Farooqi, I.H., Ayub, S. & Basheer, F. (2019). Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Safety and Environmental Protection, 122, 118-130.
  • 38. Stähelin, P.M., Valério, A., Guelli Ulson de Souza, S.M. de A, da Silva, A., Borges Valle, J.A. & Ulson de Souza, A.A. (2018). Benzene and toluene removal from synthetic automotive gasoline by mono and bicomponent adsorption process. Fuel, 231, 45-52.
  • 39. Gunasundari, E. (2017). Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). Journal of Industrial and Engineering Chemistry, 56, 129-144.
  • 40. Xia, Y., Yang, T., Zhu, N., Li, D., Chen, Z. & Lang, Q.(2019). Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis. Bioresource Technology, 288, 121593.
  • 41. Sanou, I., Bamogo, H., Sanou, A., Ouedraogo, M., Saadi, L. & Waqif, M. (2024). Adsorption of methylene blue in aqueous medium by activated carbon from peanut shells. Chemistry Africa, 7(5), 2777-2794.
  • 42. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31-59.
  • 43. Vimonses, V., Lei, S., Jin, B., Chow, C.W.K. & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2), 354-364.
  • 44. Wu, C.H. (2007). Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 144(1), 93-100.
  • 45. Chen, X., Hossain, M.F., Duan, C., Lu, J., Tsang, Y.F. & Islam, M.S. (2022). Isotherm models for adsorption of heavy metals from water - A review. Chemosphere, 307, 135545.
  • 46. Dimbo, D., Abewaa, M., Adino, E., Mengistu, A., Takele, T. & Oro, A. (2024). Methylene blue adsorption from aqueous solution using activated carbon of spathodea campanulata. Results in Engineering, 21, 101910.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm, Çevre Kirliliği ve Önlenmesi
Bölüm Makaleler
Yazarlar

İsmail Yiğit Seçkin 0000-0003-1212-656X

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 13 Şubat 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Seçkin, İ. Y. (2025). Aktivasyon Kimyasalı Türlerinin Metilen Mavisi Adsorpsiyonuna Etkilerinin İzoterm ve Kinetik Modelleri Kullanılarak İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 141-151. https://doi.org/10.21605/cukurovaumfd.1665940