Araştırma Makalesi
BibTex RIS Kaynak Göster

Python Kullanılarak DC-DC Dönüştürücüler İçin Malzeme Seçim Yazılımının Geliştirilmesi

Yıl 2025, Cilt: 40 Sayı: 1, 153 - 170, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665947

Öz

DC-DC dönüştürücüler güç elektroniğinin vazgeçilmez araçlarındandır. Dönüştürücü tasarımında doğru malzemelerin seçimi, doğru sonuçların elde edilmesi açısından önemlidir. Malzemeleri seçerken, kullanılacağı uygulamanın gereksinimlerine ve hangi DC-DC dönüştürücü kullanılacağına bakılarak ona uygun olan hesaplamalar yapılmalıdır. Yapılan bu hesaplamalara göre seçim yapılmalıdır. Hesaplamalar uygulamanın gereksinimine ve dönüştürücünün çeşidine göre farklılıklar gösterir. Piyasada bu hesaplamaları yapmak için geliştirilen, ticari yazılımlar dışında çok az sayıda yazılım bulunmaktadır. Bu çalışmada bu görevi gerçekleştirmek üzere Python tabanlı bir yazılım geliştirilmiştir. Geliştirilen yazılım her bilgi düzeyinden kişiler tarafından kullanılabilecek şekilde tasarlanmıştır. Elektronik kart tasarımı yapan lisans, lisansüstü öğrenciler ve mühendisler için malzeme seçiminde büyük kolaylık sağlayacağı düşünülmektedir.

Kaynakça

  • 1. Kazimierczuk, M.K. (2008). Pulse-width Modulated DC–DC Power Converters. John Wiley & Sons, Ltd.
  • 2. Cham, J.D., Koffi, F.L.D., Boum, A.T., Harrison, A., Zemgue, P.M.D., & Alombah, N.H. (2025). Accurate and optimal control of a bidirectional DC-DC converter: A robust adaptive approach enhanced by particle swarm optimization. Elsevier: e-Prime Advances in Electrical Engineering, Electronics and Energy, 11, 100899.
  • 3. Veerakgoundar, V. & Subramaniam, S. (2024). An efficient and compact voltage feed-forward DAB-based bidirectional DC–DC converter for onboard EV charger. Elsevier: Computers and Electrical Engineering, 122, 109979.
  • 4. García-Rodrígueza, V.H., Ambrosio-Lázarob, R.C., Pérez-Cruzc, J.H., Tavera-Mosquedad, S. & Ascencio-Hurtado, C.R. (2025). Bipolar voltage tracking control for DC/DC Boost converter–full-bridge Buck inverter system: Design and analysis. Elsevier: Results in Engineering, 25, 103690.
  • 5. Lalmalsawmi, Biswas, P.K. (2022). Full-bridge DC-DC converter and boost DC-DC converter with resonant circuit for plug-in hybrid electric vehicles. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), 21-23 July 2022, Hyderabad, India, 1-6.
  • 6. Kanaan, H.Y. & Al-Haddad, K. (2005). Modeling and simulation of DC-DC power converters in CCM and DCM using the switching functions approach: Application to the buck and cùk converters, International Conference on Power Electronics and Drives Systems, 28 November 2005 - 01 December 2005, Kuala Lumpur, Malaysia, 468-473.
  • 7. Vasavi, S., Nikhita Sri, P.D.L. & Sai Krishna, P.V. (2024). GUI-Enabled boundary regularization system for urban buildings using the tkinter. 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT,) 15-16 March 2024, Dehradun, India, 424-429.
  • 8. Charan Sai, P., Karthik, K., Bhargav Prasad, K., Pranav, C.V.S. & Divya, K.V. (2024). Real-time task manager: A Python-based approach using psutil and tkinter. 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 7-9 November 2024, 1-6.
  • 9. Spencer, M., Sheiati, S. & Chen, X. (2023). AQUADAGUI: A graphical user interface for automated quantification of damages in composite structures under fatigue loading using computer vision and thermography. Elsevier: SoftwareX, 22, 101392.
  • 10. Yoon, G. & Rho, J. (2021). MAXIM: Metasurfaces-oriented electromagnetic wave simulation software with intuitive graphical user interfaces. Elsevier: Computer Physics Communications, 264, 107846.
  • 11. Soheli, S.N., Sarowar, G., Hoque, A. & Hasan, S. (2018). Design and analysis of a DC-DC buck boost converter to achieve high efficiency and low voltage gain by using buck boost topology into buck topology. International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), 22-24 November 2018, Gazipur, Bangladesh, 1-4.
  • 12. Yadav, J.G., Yadav, Y.K. & Kumar, N. (2023). Mathematical modelling & simulation of synchronous buck converter and analysis of its simulation results. International Conference on IoT, Communication and Automation Technology (ICICAT), 23-24 June 2023, Gorakhpur, India, 1-6.
  • 13. Mohan, N., Undeland, T.M. & Robbins, W.P. (1995). Power electronics, converters, applications, and design. John Wiley & Sons, Inc.
  • 14. Rashid, M.H. (2001). Power Electronics Handbook. Academic Press.
  • 15. Hart, D.W. (2011). Power Electronics. The McGraw-Hill Companies, Inc.
  • 16. Mohan, N. (2003). Power Electronics and Drives. Minn Power Electronics (MNPERE).

Development of a Material Selection Software for DC-DC Converters Using Python

Yıl 2025, Cilt: 40 Sayı: 1, 153 - 170, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665947

Öz

DC-DC converters are one of the crucial tools of power electronics. Choosing the right materials while designing converters is essential to obtaining the right results. When selecting these components, the requirements of the intended application and the type of DC-DC converter that is to be used should be considered, and appropriate calculations should be carried out accordingly. Components should then be selected based on these calculations. These calculations differ with the requirements of the application and the type of the converter. These calculation tools are rare in market except for commercial material manufacturers. In this study, a Python-based software has been developed to fulfill this task. This software is designed to be used by individuals of all levels of knowledge. It is thought that it will provide great convenience in material selection for undergraduate and graduate students and engineers who design electronic cards.

Kaynakça

  • 1. Kazimierczuk, M.K. (2008). Pulse-width Modulated DC–DC Power Converters. John Wiley & Sons, Ltd.
  • 2. Cham, J.D., Koffi, F.L.D., Boum, A.T., Harrison, A., Zemgue, P.M.D., & Alombah, N.H. (2025). Accurate and optimal control of a bidirectional DC-DC converter: A robust adaptive approach enhanced by particle swarm optimization. Elsevier: e-Prime Advances in Electrical Engineering, Electronics and Energy, 11, 100899.
  • 3. Veerakgoundar, V. & Subramaniam, S. (2024). An efficient and compact voltage feed-forward DAB-based bidirectional DC–DC converter for onboard EV charger. Elsevier: Computers and Electrical Engineering, 122, 109979.
  • 4. García-Rodrígueza, V.H., Ambrosio-Lázarob, R.C., Pérez-Cruzc, J.H., Tavera-Mosquedad, S. & Ascencio-Hurtado, C.R. (2025). Bipolar voltage tracking control for DC/DC Boost converter–full-bridge Buck inverter system: Design and analysis. Elsevier: Results in Engineering, 25, 103690.
  • 5. Lalmalsawmi, Biswas, P.K. (2022). Full-bridge DC-DC converter and boost DC-DC converter with resonant circuit for plug-in hybrid electric vehicles. 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), 21-23 July 2022, Hyderabad, India, 1-6.
  • 6. Kanaan, H.Y. & Al-Haddad, K. (2005). Modeling and simulation of DC-DC power converters in CCM and DCM using the switching functions approach: Application to the buck and cùk converters, International Conference on Power Electronics and Drives Systems, 28 November 2005 - 01 December 2005, Kuala Lumpur, Malaysia, 468-473.
  • 7. Vasavi, S., Nikhita Sri, P.D.L. & Sai Krishna, P.V. (2024). GUI-Enabled boundary regularization system for urban buildings using the tkinter. 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT,) 15-16 March 2024, Dehradun, India, 424-429.
  • 8. Charan Sai, P., Karthik, K., Bhargav Prasad, K., Pranav, C.V.S. & Divya, K.V. (2024). Real-time task manager: A Python-based approach using psutil and tkinter. 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 7-9 November 2024, 1-6.
  • 9. Spencer, M., Sheiati, S. & Chen, X. (2023). AQUADAGUI: A graphical user interface for automated quantification of damages in composite structures under fatigue loading using computer vision and thermography. Elsevier: SoftwareX, 22, 101392.
  • 10. Yoon, G. & Rho, J. (2021). MAXIM: Metasurfaces-oriented electromagnetic wave simulation software with intuitive graphical user interfaces. Elsevier: Computer Physics Communications, 264, 107846.
  • 11. Soheli, S.N., Sarowar, G., Hoque, A. & Hasan, S. (2018). Design and analysis of a DC-DC buck boost converter to achieve high efficiency and low voltage gain by using buck boost topology into buck topology. International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), 22-24 November 2018, Gazipur, Bangladesh, 1-4.
  • 12. Yadav, J.G., Yadav, Y.K. & Kumar, N. (2023). Mathematical modelling & simulation of synchronous buck converter and analysis of its simulation results. International Conference on IoT, Communication and Automation Technology (ICICAT), 23-24 June 2023, Gorakhpur, India, 1-6.
  • 13. Mohan, N., Undeland, T.M. & Robbins, W.P. (1995). Power electronics, converters, applications, and design. John Wiley & Sons, Inc.
  • 14. Rashid, M.H. (2001). Power Electronics Handbook. Academic Press.
  • 15. Hart, D.W. (2011). Power Electronics. The McGraw-Hill Companies, Inc.
  • 16. Mohan, N. (2003). Power Electronics and Drives. Minn Power Electronics (MNPERE).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Güç Elektroniği
Bölüm Makaleler
Yazarlar

Oğuzhan Timur 0000-0002-6537-7840

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 17 Şubat 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Timur, O. (2025). Development of a Material Selection Software for DC-DC Converters Using Python. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 153-170. https://doi.org/10.21605/cukurovaumfd.1665947