Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Kazanç Özelliklerine Sahip Origami Tabanlı Kompakt Heliks Anten Tasarımı ve Deneysel Doğrulaması

Yıl 2025, Cilt: 40 Sayı: 1, 171 - 177, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665955

Öz

Bu araştırma, origami katlama tekniğine dayalı yeni kompakt heliks anten tasarımını ve deneysel doğrulamasını sunmaktadır. Çalışma, ince bir kağıt kullanarak heliks yapıyı tasarlamak ve üretmek için origami tekniğini ayrıntılı olarak açıklamaktadır. Ayrıca, 1,5 mm genişliğinde bir bakır tabaka, heliks bir yapılandırma oluşturmak üzere katlanması amaçlanan kağıt tabakasına uzunlamasına entegre edilmiştir. Bu katlanmış heliks yapı daha sonra, 4 GHz ile 8 GHz arasında 6 GHz altı 5G frekanslarında çalışmayı amaçlayan bir heliks anten oluşturmak için tamamen bakır bir toprak tabakası ile birleştirilmiştir. Heliks yapı, esneme açısının ayarlanması yoluyla hacim azaltımına ve frekans yeniden yapılandırmasına izin veren esnek özelliklere sahiptir. Optimum çalışma frekansını elde etmek için esneme açısı parametrik olarak incelenmiştir ve optimum çalışma frekansı 2 GHz bant genişliği ve 8,32 dBi kazançla 6 GHz’de elde edilmiştir. Önerilen anten yapısı üretilmiştir ve sayısal sonuçlar deneysel olarak desteklenmiştir. Bu anten, 5G ağları, Nesnelerin İnterneti (IoT) cihazları ve uydu iletişimi gibi taşınabilir iletişim teknolojileri dahil olmak üzere yeni nesil kablosuz iletişim sistemlerindeki uygulamalar için oldukça uygundur.

Kaynakça

  • 1. Gustavsson, U., Frenger, P., Fager, C., Eriksson, T., Zirath, H., Dielacher, F., ... & Carvalho, N.B. (2021). Implementation challenges and opportunities in beyond-5G and 6G communication. IEEE Journal of Microwaves, 1(1), 86-100. 2. Ali, S.A., Wajid, M. & Alam, M.S. (2020). Antenna design challenges for 5G: Assessing future direction. In Enabling Technologies for Next Generation Wireless Communications, 149-175. CRC Press.
  • 3. Volakis, J.L., Chen, C.C. & Fujimoto, K. (2010). Small antennas: miniaturization techniques & applications. Default Book Series.
  • 4. Shah, S.I.H., Bashir, S., Ashfaq, M., Altaf, A. & Rmili, H. (2021). Lightweight and low-cost deployable origami antennas-A review. IEEE Access, 9, 86429-86448.
  • 5. Hwang, M., Kim, G., Kim, S. & Jeong, N.S. (2020). Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 69(5), 2697-2705.
  • 6. Shah, S.I.H., Lim, S. & Tentzeris, M.M. (2017). Military field deployable antenna using origami. In 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (IWAT), 72-73. IEEE.
  • 7. Morgan, J., Magleby, S.P. & Howell, L.L. (2016). An approach to designing origami-adapted aerospace mechanisms. Journal of Mechanical Design, 138(5), 052301.
  • 8. Ai, C., Chen, Y., Xu, L., Li, H., Liu, C., Shang, F., ... & Zhang, S. (2021). Current development on origami/kirigami‐inspired structure of creased patterns toward robotics. Advanced Engineering Materials, 23(10), 2100473.
  • 9. Lang, R.J., Tolman, K.A., Crampton, E.B., Magleby, S.P. & Howell, L.L. (2018). A review of thickness-accommodation techniques in origami-inspired engineering. Applied Mechanics Reviews, 70(1), 010805.
  • 10. Turner, N., Goodwine, B. & Sen, M. (2016). A review of origami applications in mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(14), 2345-2362.
  • 11. Lee, S., Shah, S.I.H., Lee, H.L. & Lim, S. (2019). Frequency-reconfigurable antenna inspired by origami flasher. IEEE Antennas and Wireless Propagation Letters, 18(8), 1691-1695.
  • 12. Hwang, M., Kim, G., Kim, S. & Jeong, N.S. (2020). Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 69(5), 2697-2705.
  • 13. Molaei, A., Liu, C., Felton, S.M. & Martinez-Lorenzo, J. (2018). Origami inspired reconfigurable antenna for wireless communication systems. arXiv preprint arXiv, 1805.10370.
  • 14. Liu, X., Yao, S., Cook, B.S., Tentzeris, M.M. & Georgakopoulos, S.V. (2015). An origami reconfigurable axial-mode bifilar helical antenna. IEEE Transactions on Antennas and Propagation, 63(12), 5897-5903.
  • 15. Yao, S. & Georgakopoulos, S.V. (2017). Origami segmented helical antenna with switchable sense of polarization. IEEE Access, 6, 4528-4536.
  • 16. Kaddour, A.S., Zekios, C.L. & Georgakapoulos, S.V. (2020). A reconfigurable origami reflectarray. In 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-4. IEEE.
  • 17. Mittermayer, J., Krieger, G. & Villano, M. (2024). A Novel Approach for In-Orbit Satellite Antenna Pattern Measurement using a Small Satellite Flying in Double-Cross-Helix Formation. IEEE Transactions on Geoscience and Remote Sensing.
  • 18. Zeain, M.Y., Zakaria, Z., Abu, M., Al-Gburi, A.J.A., Alsariera, H., Toding, A., ... & Saeidi, T. (2020). Design of helical antenna for next generation wireless communication. Prz. Elektrotechniczny, 11, 96-99.
  • 19. Chen, Z., Ma, C., Chu, H., Deng, Z., Chen, S. & Li, G. (2022). An inflatable axial-mode helical antenna with retractability and releasability for satellite navigation and positioning system. AEU-International Journal of Electronics and Communications, 156, 154345.
  • 20. Pu, Y., Wang, H., Zhao, Y., Yuan, Y., Xi, X. & IEEE Member. (2021). Miniaturized wideband quadrifilar helix antenna for satellite navigation application. Microwave and Optical Technology Letters, 63(1), 252-263.
  • 21. Amn-e-Elahi, A., Rezaei, P., Karami, F., Hyjazie, F. & Boutayeb, H. (2022). Analysis and design of a stacked PCBs-based quasi-helix antenna. IEEE Transactions on Antennas and Propagation, 70(12), 12253-12257.
  • 22. Palanisamy, S., Thangaraju, B., Khalaf, O.I., Alotaibi, Y., Alghamdi, S. & Alassery, F. (2021). A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies, 14(19), 6204

Design and Experimental Verification of an Origami Based Compact Helix Antenna with High Gain Characteristics

Yıl 2025, Cilt: 40 Sayı: 1, 171 - 177, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1665955

Öz

This research presents origami folding technique based novel compact helix antenna design and experimental verification. The study begins by detailing the origami technique to design and construct helical structure using a thin paper. A 1.5 mm wide copper layer is then longitudinally integrated onto the prepared paper layer which is aimed to fold to form a helical configuration. This folded helical strcure then combined a fully copper ground layer to create an helix antenna configuration that aims to operate at sub-6 GHz 5G frequencies between 4 GHz and 8 GHz. The helical structure has flexible characteristics which allows for volume reduction and frequency reconfiguration through adjustment in the flexion angle. The flexion angle parametrically examined to obtain optimum operating frequency and the optimum operating frequency is obtained at 6 GHz with 2 GHz bandwidth and 8.32 dBi gain. Proposed antenna structure was manufactured and numerical results were supported experimentally. This antenna is well suited for applications in next generation wireless communication systems, including 5G networks, Internet of Things (IoT) devices, and portable communication technologies such as satellite communication.

Kaynakça

  • 1. Gustavsson, U., Frenger, P., Fager, C., Eriksson, T., Zirath, H., Dielacher, F., ... & Carvalho, N.B. (2021). Implementation challenges and opportunities in beyond-5G and 6G communication. IEEE Journal of Microwaves, 1(1), 86-100. 2. Ali, S.A., Wajid, M. & Alam, M.S. (2020). Antenna design challenges for 5G: Assessing future direction. In Enabling Technologies for Next Generation Wireless Communications, 149-175. CRC Press.
  • 3. Volakis, J.L., Chen, C.C. & Fujimoto, K. (2010). Small antennas: miniaturization techniques & applications. Default Book Series.
  • 4. Shah, S.I.H., Bashir, S., Ashfaq, M., Altaf, A. & Rmili, H. (2021). Lightweight and low-cost deployable origami antennas-A review. IEEE Access, 9, 86429-86448.
  • 5. Hwang, M., Kim, G., Kim, S. & Jeong, N.S. (2020). Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 69(5), 2697-2705.
  • 6. Shah, S.I.H., Lim, S. & Tentzeris, M.M. (2017). Military field deployable antenna using origami. In 2017 International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (IWAT), 72-73. IEEE.
  • 7. Morgan, J., Magleby, S.P. & Howell, L.L. (2016). An approach to designing origami-adapted aerospace mechanisms. Journal of Mechanical Design, 138(5), 052301.
  • 8. Ai, C., Chen, Y., Xu, L., Li, H., Liu, C., Shang, F., ... & Zhang, S. (2021). Current development on origami/kirigami‐inspired structure of creased patterns toward robotics. Advanced Engineering Materials, 23(10), 2100473.
  • 9. Lang, R.J., Tolman, K.A., Crampton, E.B., Magleby, S.P. & Howell, L.L. (2018). A review of thickness-accommodation techniques in origami-inspired engineering. Applied Mechanics Reviews, 70(1), 010805.
  • 10. Turner, N., Goodwine, B. & Sen, M. (2016). A review of origami applications in mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(14), 2345-2362.
  • 11. Lee, S., Shah, S.I.H., Lee, H.L. & Lim, S. (2019). Frequency-reconfigurable antenna inspired by origami flasher. IEEE Antennas and Wireless Propagation Letters, 18(8), 1691-1695.
  • 12. Hwang, M., Kim, G., Kim, S. & Jeong, N.S. (2020). Origami-inspired radiation pattern and shape reconfigurable dipole array antenna at C-band for CubeSat applications. IEEE Transactions on Antennas and Propagation, 69(5), 2697-2705.
  • 13. Molaei, A., Liu, C., Felton, S.M. & Martinez-Lorenzo, J. (2018). Origami inspired reconfigurable antenna for wireless communication systems. arXiv preprint arXiv, 1805.10370.
  • 14. Liu, X., Yao, S., Cook, B.S., Tentzeris, M.M. & Georgakopoulos, S.V. (2015). An origami reconfigurable axial-mode bifilar helical antenna. IEEE Transactions on Antennas and Propagation, 63(12), 5897-5903.
  • 15. Yao, S. & Georgakopoulos, S.V. (2017). Origami segmented helical antenna with switchable sense of polarization. IEEE Access, 6, 4528-4536.
  • 16. Kaddour, A.S., Zekios, C.L. & Georgakapoulos, S.V. (2020). A reconfigurable origami reflectarray. In 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-4. IEEE.
  • 17. Mittermayer, J., Krieger, G. & Villano, M. (2024). A Novel Approach for In-Orbit Satellite Antenna Pattern Measurement using a Small Satellite Flying in Double-Cross-Helix Formation. IEEE Transactions on Geoscience and Remote Sensing.
  • 18. Zeain, M.Y., Zakaria, Z., Abu, M., Al-Gburi, A.J.A., Alsariera, H., Toding, A., ... & Saeidi, T. (2020). Design of helical antenna for next generation wireless communication. Prz. Elektrotechniczny, 11, 96-99.
  • 19. Chen, Z., Ma, C., Chu, H., Deng, Z., Chen, S. & Li, G. (2022). An inflatable axial-mode helical antenna with retractability and releasability for satellite navigation and positioning system. AEU-International Journal of Electronics and Communications, 156, 154345.
  • 20. Pu, Y., Wang, H., Zhao, Y., Yuan, Y., Xi, X. & IEEE Member. (2021). Miniaturized wideband quadrifilar helix antenna for satellite navigation application. Microwave and Optical Technology Letters, 63(1), 252-263.
  • 21. Amn-e-Elahi, A., Rezaei, P., Karami, F., Hyjazie, F. & Boutayeb, H. (2022). Analysis and design of a stacked PCBs-based quasi-helix antenna. IEEE Transactions on Antennas and Propagation, 70(12), 12253-12257.
  • 22. Palanisamy, S., Thangaraju, B., Khalaf, O.I., Alotaibi, Y., Alghamdi, S. & Alassery, F. (2021). A novel approach of design and analysis of a hexagonal fractal antenna array (HFAA) for next-generation wireless communication. Energies, 14(19), 6204
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Fatih Özkan Alkurt 0000-0002-9940-0658

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 6 Eylül 2024
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Alkurt, F. Ö. (2025). Design and Experimental Verification of an Origami Based Compact Helix Antenna with High Gain Characteristics. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 171-177. https://doi.org/10.21605/cukurovaumfd.1665955