Araştırma Makalesi
BibTex RIS Kaynak Göster

UV Yaşlandırma Sonrası Parçacıklı Katman İçi Karbon/Aramid Takviyeli Kompozitlerin Sertlik Değişiminin Değerlendirilmesi

Yıl 2025, Cilt: 40 Sayı: 1, 219 - 226, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1666067

Öz

Bu çalışmada, katman içi karbon/aramid hibrit kompozitlerin sertlik özelliklerinin UV yaşlanması ve nanokil ilavesiyle nasıl etkilendiği incelenmiştir. Farklı ağırlık yüzdelerinde nanokil ile üretildikten sonra (%0, %0,5, %1,0, %1,5, %2,0 ve %3,0), numuneler 0, 450 ve 900 saat UV yaşlanmasına maruz bırakılmıştır. Nanokil takviyesi, takviyesiz numunelere kıyasla yüzey sertliğini önemli ölçüde artırmıştır. Sertlik testlerine göre, sırasıyla %0,5, %1,0, %1,5, %2,0 ve %3,0 nanokil içeriği için %4,69, %17,19, %27,73, %31,25 ve %32,81'lik artışlar görülmüştür. Ayrıca, UV yaşlanması sonunda numunelerin sertlik değerlerinde bir artış olduğu belirlenmiştir. Sertlik değerlerindeki artış UV yaşlanma süresi arttıkça devam etmiştir. Bu sonuçlar nanokil takviyesinin yüzey sertliğini artırmak için UV kaynaklı moleküler değişikliklerle sinerjik olarak etkileşime girdiğini ve daha yüksek nanokil içeriklerinde azalan getiriler gözlemlendiğini göstermektedir.

Kaynakça

  • 1. Erkek, B., Kosedag, E. & Adin, H. (2024). Hybridization effect on energy absorption capacity of composite crash boxes. Polymer Composites, 45(13), 1-12.
  • 2. Bulut, M., Bozkurt, Ö.Y., Erkliğ, A., Yaykaşlı, H. & Özbek, Ö. (2020). Mechanical and dynamic properties of basalt fiber-reinforced composites with nanoclay particles. Arabian Journal for Science and Engineering, 45, 1017-1033.
  • 3. Demircan, G. (2024). Structural integrity of glass fiber reinforced nanocomposites under hydrothermal aging for offshore structure applications. Applied Ocean Research, 146, 103959.
  • 4. Ovalı, S., & Sancak, E. (2022). Investigating the effect of the aging process on LDPE composites with UV protective additives. Journal of Thermoplastic Composite Materials, 35(11), 1921-1939.
  • 5. Celebi, M., Altun, M., & Ovali, S. (2022). The effect of UV additives on thermo-oxidative and color stability of pistachio shell reinforced polypropylene composites. Polymers and Polymer Composites, 30, 09673911221081700.
  • 6. Sahu, A.K., Sudhakar, K. & Sarviya, R.M. (2020). UV light effect on the mechanical behaviour of HDPE/Carbon black composites. In IOP Conference Series: Materials Science and Engineering, 788(1), 012054. IOP Publishing.
  • 7. Dulebova, L. & Garbacz, T. (2017). The effect of particulate fillers on hardness of polymer composite. Advances in Science and Technology. Research Journal, 11(3), 66-71.
  • 8. Akaluzia, R.O., Edoziuno, F.O., Adediran, A.A., Odoni, B.U., Edibo, S. & Olayanju, T.M.A. (2021). Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites. Materials Today: Proceedings, 38, 570-577.
  • 9. Raja, R.S., Manisekar, K. & Manikandan, V. (2013). Effect of fly ash filler size on mechanical properties of polymer matrix composites. International Journal of Mining, Metallurgy and Mechanical Engineering, 1, 2320-4060.
  • 10. Wachter, I., Štefko, T., Rantuch, P., Martinka, J. & Pastierová, A. (2021). Effect of UV radiation on optical properties and hardness of transparent wood. Polymers, 13(13), 2067.
  • 11. Girimurugan, R., Pugazhenthi, R., Maheskumar, P., Suresh, T. & Vairavel, M. (2021). Impact and hardness behaviour of epoxy resin matrix composites reinforced with banana fiber/camellia sinensis particles. Materials Today: Proceedings, 39, 373-377.
  • 12. Ramli, J., Jeefferie, A.R. & Mahat, M.M. (2011). Effects of UV curing exposure time to the mechanical and physical properties of the epoxy and vinyl ester fiber glass laminates composites. ARPN J. Eng. Appl. Sci, 6, 104-109.
  • 13. Shi, Z., Zou, C., Zhou, F. & Zhao, J. (2022). Analysis of the mechanical properties and damage mechanism of carbon fiber/epoxy composites under UV aging. Materials, 15(8), 2919.
  • 14. Dulebova, L. & Garbacz, T. (2017). The effect of particulate fillers on hardness of polymer composite. Advances in Science and Technology. Research Journal, 11(3), 66-71.
  • 15. Sahu, A.K., Sudhakar, K. & Sarviya, R.M. (2020). UV light effect on the mechanical behaviour of HDPE/Carbon black composites. In IOP Conference Series: Materials Science and Engineering, 788(1), 012054. IOP Publishing.
  • 16. Oğuz, Z.A. (2024). Measurement of Charpy impact durability of intraply hybrid composites under ultraviolet light and nanoparticle reinforcement. Journal of Materials and Mechatronics: A, 5(2), 316-326.
  • 17. ASTM G154 Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials.
  • 18. Suryawan, I.G.P.A., Suardana, N.P.G., Winaya, I.S. & Suyasa, I. (2020). Hardness analysis of epoxy composite reinforced with glass fiber compared to nettle fibers. Int. J. Eng. Emerg. Technol, 5(1), 2020.
  • 19. Raajeshkrishna, C.R. & Chandramohan, P. (2020). Effect of reinforcements and processing method on mechanical properties of glass and basalt epoxy composites. SN Applied Sciences, 2(5), 959.
  • 20. Oğuz, Z.A. (2024). UV aging effect on buckling properties of nanoclay particulated intraply hybrid composites. Physica Scripta, 100(2), 025916.
  • 21. Özbek, Ö. (2021). Axial and lateral buckling analysis of kevlar/epoxy fiber‐reinforced composite laminates incorporating silica nanoparticles. Polymer Composites, 42(3), 1109-1122.

Assessment of the Change in Hardness of Particulated Intraply Carbon/Aramid Reinforced Composites After UV Aging

Yıl 2025, Cilt: 40 Sayı: 1, 219 - 226, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1666067

Öz

This work examines how the hardness characteristics of intraply carbon/aramid hybrid composites are affected by UV aging and nanoclay addition. After being produced with different weight percentages of nanoclay (0%, 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%), the samples were exposed to UV aging for 0, 450, and 900 hours. In comparison to unreinforced samples, nanoclay reinforcement dramatically increased the surface hardness, as demonstrated by increases of 4.69%, 17.19%, 27.73%, 31.25%, and 32.81% for 0.5%, 1.0%, 1.5%, 2.0%, and 3.0% nanoclay content, respectively, according to hardness tests. In addition, it was determined that there was an increase in the hardness value of the samples at the end of UV aging. The increase in hardness values continued as the UV aging time increased. These results indicate that nanoclay reinforcement synergistically interacts with UV-induced molecular changes to enhance surface hardness, with diminishing returns observed at higher nanoclay contents.

Kaynakça

  • 1. Erkek, B., Kosedag, E. & Adin, H. (2024). Hybridization effect on energy absorption capacity of composite crash boxes. Polymer Composites, 45(13), 1-12.
  • 2. Bulut, M., Bozkurt, Ö.Y., Erkliğ, A., Yaykaşlı, H. & Özbek, Ö. (2020). Mechanical and dynamic properties of basalt fiber-reinforced composites with nanoclay particles. Arabian Journal for Science and Engineering, 45, 1017-1033.
  • 3. Demircan, G. (2024). Structural integrity of glass fiber reinforced nanocomposites under hydrothermal aging for offshore structure applications. Applied Ocean Research, 146, 103959.
  • 4. Ovalı, S., & Sancak, E. (2022). Investigating the effect of the aging process on LDPE composites with UV protective additives. Journal of Thermoplastic Composite Materials, 35(11), 1921-1939.
  • 5. Celebi, M., Altun, M., & Ovali, S. (2022). The effect of UV additives on thermo-oxidative and color stability of pistachio shell reinforced polypropylene composites. Polymers and Polymer Composites, 30, 09673911221081700.
  • 6. Sahu, A.K., Sudhakar, K. & Sarviya, R.M. (2020). UV light effect on the mechanical behaviour of HDPE/Carbon black composites. In IOP Conference Series: Materials Science and Engineering, 788(1), 012054. IOP Publishing.
  • 7. Dulebova, L. & Garbacz, T. (2017). The effect of particulate fillers on hardness of polymer composite. Advances in Science and Technology. Research Journal, 11(3), 66-71.
  • 8. Akaluzia, R.O., Edoziuno, F.O., Adediran, A.A., Odoni, B.U., Edibo, S. & Olayanju, T.M.A. (2021). Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites. Materials Today: Proceedings, 38, 570-577.
  • 9. Raja, R.S., Manisekar, K. & Manikandan, V. (2013). Effect of fly ash filler size on mechanical properties of polymer matrix composites. International Journal of Mining, Metallurgy and Mechanical Engineering, 1, 2320-4060.
  • 10. Wachter, I., Štefko, T., Rantuch, P., Martinka, J. & Pastierová, A. (2021). Effect of UV radiation on optical properties and hardness of transparent wood. Polymers, 13(13), 2067.
  • 11. Girimurugan, R., Pugazhenthi, R., Maheskumar, P., Suresh, T. & Vairavel, M. (2021). Impact and hardness behaviour of epoxy resin matrix composites reinforced with banana fiber/camellia sinensis particles. Materials Today: Proceedings, 39, 373-377.
  • 12. Ramli, J., Jeefferie, A.R. & Mahat, M.M. (2011). Effects of UV curing exposure time to the mechanical and physical properties of the epoxy and vinyl ester fiber glass laminates composites. ARPN J. Eng. Appl. Sci, 6, 104-109.
  • 13. Shi, Z., Zou, C., Zhou, F. & Zhao, J. (2022). Analysis of the mechanical properties and damage mechanism of carbon fiber/epoxy composites under UV aging. Materials, 15(8), 2919.
  • 14. Dulebova, L. & Garbacz, T. (2017). The effect of particulate fillers on hardness of polymer composite. Advances in Science and Technology. Research Journal, 11(3), 66-71.
  • 15. Sahu, A.K., Sudhakar, K. & Sarviya, R.M. (2020). UV light effect on the mechanical behaviour of HDPE/Carbon black composites. In IOP Conference Series: Materials Science and Engineering, 788(1), 012054. IOP Publishing.
  • 16. Oğuz, Z.A. (2024). Measurement of Charpy impact durability of intraply hybrid composites under ultraviolet light and nanoparticle reinforcement. Journal of Materials and Mechatronics: A, 5(2), 316-326.
  • 17. ASTM G154 Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials.
  • 18. Suryawan, I.G.P.A., Suardana, N.P.G., Winaya, I.S. & Suyasa, I. (2020). Hardness analysis of epoxy composite reinforced with glass fiber compared to nettle fibers. Int. J. Eng. Emerg. Technol, 5(1), 2020.
  • 19. Raajeshkrishna, C.R. & Chandramohan, P. (2020). Effect of reinforcements and processing method on mechanical properties of glass and basalt epoxy composites. SN Applied Sciences, 2(5), 959.
  • 20. Oğuz, Z.A. (2024). UV aging effect on buckling properties of nanoclay particulated intraply hybrid composites. Physica Scripta, 100(2), 025916.
  • 21. Özbek, Ö. (2021). Axial and lateral buckling analysis of kevlar/epoxy fiber‐reinforced composite laminates incorporating silica nanoparticles. Polymer Composites, 42(3), 1109-1122.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Zeynal Abidin Oğuz 0000-0002-8566-2331

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 1 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Oğuz, Z. A. (2025). Assessment of the Change in Hardness of Particulated Intraply Carbon/Aramid Reinforced Composites After UV Aging. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 219-226. https://doi.org/10.21605/cukurovaumfd.1666067